1
|
Kahkesh S, Hedayati N, Rahimzadeh P, Farahani N, Khoozani MF, Abedi M, Nabavi N, Naeimi B, Khoshnazar SM, Alimohammadi M, Alaei E, Mahmoodieh B. The function of circular RNAs in regulating Wnt/β-catenin signaling: An innovative therapeutic strategy for breast and gynecological cancers. Pathol Res Pract 2025; 270:155944. [PMID: 40228402 DOI: 10.1016/j.prp.2025.155944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025]
Abstract
Breast cancer (BC) and gynecological malignancies, including cervical, ovarian, and uterine cancers, are significant global health challenges due to their high prevalence, complex nature, and elevated mortality rates. Dysregulation of the Wnt/β-catenin signaling pathway is a common feature in gynecological malignancies, contributing to cancer cell growth, progression, migration, and metastasis. Recent studies have highlighted the pivotal role of non-coding RNAs (ncRNAs), particularly circular RNAs (circRNAs), in modulating the Wnt/β-catenin signaling pathway. Acting as sponges for microRNAs (miRNAs), circRNAs regulate key oncogenic and tumor-suppressive processes by influencing Wnt-related components. This research explores the role of circRNAs in breast and gynecological malignancies, focusing on their regulatory effects on the Wnt/β-catenin pathway. The findings reveal that circRNAs modulate critical cellular processes such as proliferation, apoptosis, autophagy, and metastasis, with potential implications for therapeutic interventions. Targeting circRNA-mediated dysregulation of Wnt signaling could offer novel strategies for improving diagnostic precision, treatment efficacy, and survival outcomes in breast and gynecological cancers.
Collapse
Affiliation(s)
- Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Farhadi Khoozani
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Bita Naeimi
- Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Xu Q, Xu Y, Yang T, Tang Y, Yang Q. The Role of Hsa_circ_0087862/miR-149-5p/TRAF6 Regulatory Axis in Colorectal Cancer Progression. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05283-4. [PMID: 40366539 DOI: 10.1007/s12010-025-05283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
Circular RNAs (circRNAs) have been reported to be associated with the progression of various tumors including colorectal cancer (CRC). However, the role and underlying mechanism of hsa_circ_0087862 in CRC remains unclear. Hsa_circ_0087862 expression in CRC tissues was analyzed using two GEO datasets (GSE138589 and GSE126094). Expression of hsa_circ_0087862, miR-149-5p and tumor necrosis factor receptor-associated factor 6 (TRAF6) in CRC cells was detected. The subcellular distribution of hsa_circ_0087862 was analyzed using a Cytoplasmic & Nuclear RNA Purification Kit. The function of hsa_circ_0087862 in CRC cells was detected using CCK-8, Transwell invasion assay, flow cytometry analysis, and Caspase-3 activity assay. The relationships between hsa_circ_0087862, miR-149-5p and TRAF6 were detected using luciferase reporter assay, RIP, or biotinylated RNA pull-down assay. Hsa_circ_0087862 was upregulated in CRC tissues and cells. Hsa_circ_0087862 is resistant to RNase R digestion and predominantly localized in the cytoplasm. Interference with hsa_circ_0087862 inhibited the malignant phenotypes of CRC cells by reducing cell proliferation and invasive abilities and triggering apoptosis. Hsa_circ_0087862 silencing inhibited TRAF6 expression by sponging miR-149-5p in CRC cells. Inhibition of miR-149-5p attenuated the effects of hsa_circ_0087862 on the malignant phenotypes of CRC cells. TRAF6 overexpression abolished the effects of miR-149-5p on cell growth, invasion and apoptosis in CRC cells. In conclusion, hsa_circ_0087862 silencing inhibited the malignant behaviors of CRC cells through inhibiting TRAF6 expression by sponging miR-149-5p.
Collapse
Affiliation(s)
- Qiu Xu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang, 473004, China
- Nanyang Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital, Nanyang, 473004, China
| | - Yi Xu
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, 473004, China
| | - Tianyao Yang
- Department of General Surgery, People's Hospital of Tiantai County, Taizhou, 317299, China
| | - Yan Tang
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, 473004, China
| | - Qiong Yang
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Nadukkandy AS, Blaize B, Kumar CD, Mori G, Cordani M, Kumar LD. Non-coding RNAs as mediators of epithelial to mesenchymal transition in metastatic colorectal cancers. Cell Signal 2025; 127:111605. [PMID: 39842529 DOI: 10.1016/j.cellsig.2025.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, necessitating the development of innovative treatment strategies. Recent research has underscored the significant role of non-coding RNAs (ncRNAs) in CRC pathogenesis, offering new avenues for diagnosis and therapy. In this review, we delve into the intricate roles of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in CRC progression, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance. We highlight the interaction of these ncRNAs with and regulation of key signaling pathways, such as Wnt/β-catenin, Notch, JAK-STAT, EGFR, and TGF-β, and the functional relevance of these interactions in CRC progression. Additionally, the review highlights the emerging applications of nanotechnology in enhancing the delivery and efficacy of ncRNA-based therapeutics, which could address existing challenges related to specificity and side effects. Future research directions, including advanced diagnostic tools, targeted therapeutics, strategies to overcome drug resistance, and the integration of personalized medicine approaches are discussed. Integrating nanotechnology with a deeper understanding of CRC biology offers the potential for more effective, targeted, and personalized strategies, though further research is essential to validate these approaches.
Collapse
Affiliation(s)
- Aisha Shigna Nadukkandy
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Britny Blaize
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore 632004, Tamil Nadu, India
| | - Giulia Mori
- Department Of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India.
| |
Collapse
|
4
|
Shahpari M, Hashemi M, Younesirad T, Hasanzadeh A, Mosanne MM, Ahmadifard M. The functional roles of competitive endogenous RNA (ceRNA) networks in apoptosis in human cancers: The circRNA/miRNA/mRNA regulatory axis and cell signaling pathways. Heliyon 2024; 10:e37089. [PMID: 39524849 PMCID: PMC11546195 DOI: 10.1016/j.heliyon.2024.e37089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Circular RNAs are noncoding RNAs with circular conformation mainly due to backsplicing event. CircRNAs can potentially impact cell biological processes by interacting with cell signaling pathways. Numerous circRNAs have been found to be aberrantly expressed in a variety of cancers. These RNAs can act as ceRNA (competitive endogenous RNA) by sponging certain miRNAs to form circRNA/miRNA/mRNA networks. Dysregulation of ceRNA networks may lead to dysfunctions in various cell pathways, which modulate apoptosis-associated genes and ultimately result in cancer progression. Since disruption of apoptosis is one of the leading causes of cancer development, one approach for cancer treatment is to drive cells toward apoptosis. In this review, we present a summary of studies on the role of ceRNA networks in cellular signaling pathways that regulate apoptosis; these networks are suggested to be potential biomarkers for cancer treatment.
Collapse
Affiliation(s)
| | | | - Tayebeh Younesirad
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Aida Hasanzadeh
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad mahdi Mosanne
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohamadreza Ahmadifard
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
5
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)The First Department of Thoracic SurgeryPeking University Cancer Hospital and InstitutePeking University School of OncologyBeijingChina
| | - Jin Zhang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Yuchen Yang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Zhuofeng Liu
- Department of Traditional Chinese MedicineThe Third Affiliated Hospital of Xi'an Medical UniversityXi'anChina
| | - Sijia Sun
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Rui Li
- Department of EpidemiologySchool of Public HealthAir Force Medical UniversityXi'anChina
| | - Hui Zhu
- Department of AnatomyMedical College of Yan'an UniversityYan'anChina
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Tian Li
- School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Jin Zheng
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Jie Li
- Department of EndocrineXijing 986 HospitalAir Force Medical UniversityXi'anChina
| | - Litian Ma
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
- Department of GastroenterologyTangdu HospitalAir Force Medical UniversityXi'anChina
- School of MedicineNorthwest UniversityXi'anChina
| |
Collapse
|
6
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Jin J, Du M, Ding D, Xuan R. CircRNA circ_0013339 Regulates the Progression of Colorectal Cancer Through miR-136-5p/SOX9 Axis. Biochem Genet 2024; 62:2362-2380. [PMID: 37925667 DOI: 10.1007/s10528-023-10540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common gastrointestinal malignancy. Dysregulation of circular RNAs (circRNAs) is associated with the progression of CRC. However, the role of circ_0013339 (hsa_circ_0013339) in CRC is still not clear. METHODS The levels of circ_0013339, miR-136-5p, and SRY-box transcription factor 9 (SOX9) in CRC were gauged by quantitative real-time polymerase chain reaction (qRT-PCR). Colony formation and 5-Ethynyl-2'-deoxyuridine (EdU) assays were used to detect cell proliferation. Cell counting kit-8 (CCK8) assay was used to measure cell viability. Western blot assay was performed to examine protein expression. The relationship between miR-136-5p and circ_0013339 or SOX9 was tested by dual-luciferase reporter assay. The effect of sh-circ_0013339 on tumor growth in vivo was examined by xenograft experiments. RESULTS Circ_0013339 expression was elevated in CRC tissues and cells, and circ_0013339 knockdown diminished the growth of CRC cells. MiR-136-5p was regulated by circ_0013339. MiR-136-5p deficiency ameliorated the effects of circ_0013339 silencing on CRC cell malignant behaviors. Circ_0013339 modulated SOX9 expression through miR-136-5p. SOX9 addition reversed the effects of miR-136-5p overexpression on CRC cell behaviors. Moreover, silencing of circ_0013339 suppressed the growth of xenograft tumors in vivo. CONCLUSION Circ_0013339 regulates the progression of CRC through miR-136-5p-dependent regulation of SOX9, uncovering a novel regulatory mechanism of circ_0013339 in CRC.
Collapse
Affiliation(s)
- Juan Jin
- Department of Gastroenterology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230000, Anhui, China
| | - Min Du
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University(The First People's Hospital of Hefei), Hefei, 230000, Anhui, China.
| | - Ding Ding
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University(The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| | - Ran Xuan
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University(The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| |
Collapse
|
8
|
Hussen BM, Abdullah SR, Mohammed AA, Rasul MF, Hussein AM, Eslami S, Glassy MC, Taheri M. Advanced strategies of targeting circular RNAs as therapeutic approaches in colorectal cancer drug resistance. Pathol Res Pract 2024; 260:155402. [PMID: 38885593 DOI: 10.1016/j.prp.2024.155402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Colorectal cancer (CRC) stands second in terms of mortality and third among the highest prevalent kinds of cancer globally. CRC prevalence is rising in moderately and poorly developed regions and is greater in economically advanced regions. Despite breakthroughs in targeted therapy, resistance to chemotherapeutics remains a significant challenge in the long-term management of CRC. Circular RNAs (circRNAs) have been involved in growing cancer therapy resistance, particularly in CRC, according to an increasing number of studies in recent years. CircRNAs are one of the novel subclasses of non-coding RNAs, previously thought of as viroid. According to studies, circRNAs have been recommended as biological markers for therapeutic targets and diagnostic and prognostic purposes. That is particularly notable given that the expression of circRNAs has been linked to the hallmarks of CRC since they are responsible for drug resistance in CRC patients; thereby, circRNAs are significant for chemotherapy failure. Moreover, knowledge concerning circRNAs remains relatively unclear despite using all these advanced techniques. Here, in this study, we will go over the most recent published work to highlight the critical roles of circRNAs in CRC development and drug resistance and highlight the main strategies to overcome drug resistance to improve clinical outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | | | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ali M Hussein
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mark C Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, CA, United States
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
9
|
Andrabi MQ, Kesavan Y, Ramalingam S. Non-coding RNAs as Biomarkers for Survival in Colorectal Cancer Patients. Curr Aging Sci 2024; 17:5-15. [PMID: 36733201 DOI: 10.2174/1874609816666230202101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 02/04/2023]
Abstract
Colorectal cancer (CRC) has a high incidence and fatality rate worldwide. It ranks second concerning death worldwide. Cancer patients are diagnosed with the disease at a later stage due to the absence of early diagnostic methods, which leads to increased death. With the help of recent advancements in the fields of diagnosis and therapy, the development of novel methods using new targets could be helpful for the long-term survival of CRC patients when CRC is detected early. However, the prognosis for the advanced stage of CRC is abysmal. New biomarkers are emerging as promising alternatives since they can be utilized for early detection of CRC, are simple to use, and non-invasive. Non-coding RNAs (ncRNAs) have been seen to have an aberrant expression in the development of many malignancies, including CRC. In the past two decades, much research has been done on non-coding RNAs, which may be valuable as biomarkers and targets for antitumor therapy. Non-coding RNAs can be employed in detecting and treating CRC. Non-coding RNAs play an essential role in regulating gene expression. This article reviews ncRNAs and their expression levels in CRC patients that could be used as potential biomarkers. Various ncRNAs have been associated with CRC, such as microRNAs, long non-coding RNAs, circular RNAs, etc. The expression of these non-coding RNAs may provide insights into the stages of cancer and the prognosis of cancer patients and therefore proper precautionary measures can be taken to decrease cancer-related deaths.
Collapse
Affiliation(s)
- Mohammad Qasim Andrabi
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Yasodha Kesavan
- Department of Biotechnology, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| |
Collapse
|
10
|
Rajendran P, Sekar R, Zahra HA, Jayaraman S, Rajagopal P, Abdallah BM, Ali EM, Abdelsalam SA, Veeraraghavan V. Salivaomics to decode non-coding RNAs in oral cancer. A narrative review. Noncoding RNA Res 2023; 8:376-384. [PMID: 37250455 PMCID: PMC10220469 DOI: 10.1016/j.ncrna.2023.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023] Open
Abstract
Oral cancer is the most debilitating disease which affects the orderly life of a human. With so much advancement in research and technology, the average life expectancy of an individual with oral cancer appears to be about 5 years. The changing trend in incidence of oral cancer among young individuals and women without tobacco habits are ascending. Non habit related oral cancer are taking centre stage and multiple factors which induce complex biology are associated in such scenarios. To decipher the aetiology and to understand the process, these cancerous conditions are to be studied at molecular level. Saliva, the most non-invasively obtained body fluid are assessed for biomarkers exclusively in liquid biopsy. This fluid gives a huge platform to study number of molecules associated with oral cancer. Non coding RNAs are transcripts with no protein coding function. They are gaining more importance in recent times. Long noncoding RNA, microRNA are major types of noncoding transcriptome that influences in progression of oral cancer. They seem to play an important role in health and disease. Apart from these, circulating tumour cells, exosomes, extracellular vesicles, antigens and other proteins can be studied from saliva. This review is aimed to update the knowledge on current biomarkers in saliva associated with oral cancer and their epigenetic role in disease progression as well recent advances in detecting these markers to identify the stage of the disease, which will help in deciding the treatment protocol.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Ramya Sekar
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Vishnupriya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
11
|
Wei MM, Yu CQ, Li LP, You ZH, Wang L. BCMCMI: A Fusion Model for Predicting circRNA-miRNA Interactions Combining Semantic and Meta-path. J Chem Inf Model 2023; 63:5384-5394. [PMID: 37535872 DOI: 10.1021/acs.jcim.3c00852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
More and more evidence suggests that circRNA plays a vital role in generating and treating diseases by interacting with miRNA. Therefore, accurate prediction of potential circRNA-miRNA interaction (CMI) has become urgent. However, traditional wet experiments are time-consuming and costly, and the results will be affected by objective factors. In this paper, we propose a computational model BCMCMI, which combines three features to predict CMI. Specifically, BCMCMI utilizes the bidirectional encoding capability of the BERT algorithm to extract sequence features from the semantic information of circRNA and miRNA. Then, a heterogeneous network is constructed based on cosine similarity and known CMI information. The Metapath2vec is employed to conduct random walks following meta-paths in the network to capture topological features, including similarity features. Finally, potential CMIs are predicted using the XGBoost classifier. BCMCMI achieves superior results compared to other state-of-the-art models on two benchmark datasets for CMI prediction. We also utilize t-SNE to visually observe the distribution of the extracted features on a randomly selected dataset. The remarkable prediction results show that BCMCMI can serve as a valuable complement to the wet experiment process.
Collapse
Affiliation(s)
- Meng-Meng Wei
- School of Information Engineering, Xijing University, Xi'an, Shaanxi 710123, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi'an, Shaanxi 710123, China
| | - Li-Ping Li
- College of Agriculture and Forestry, Longdong University, Qingyang, Gansu 745000, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lei Wang
- Guangxi Key Lab of Human-Machine Interaction and Intelligent Decision, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| |
Collapse
|
12
|
Molaei P, Savari M, Mahdavinezhad A, Najafi R, Afshar S, Esfandiari N, Khorrami R, Hashemi M. Highlighting functions of apoptosis and circular RNAs in colorectal cancer. Pathol Res Pract 2023; 248:154592. [PMID: 37295258 DOI: 10.1016/j.prp.2023.154592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Colorectal cancer (CRC) is known as one of the global problems that endangers the lives of thousands of people every year. Various treatments have been used to deal with this disease, but in some cases, they are not effective. Circular RNAs, as a novel class of noncoding RNAs, have different expression levels and various functions in cancer cells, such as gene regulation through microRNA sponging. They play an important role in various cellular processes, including differentiation, proliferation, invasion, and apoptosis. Changes in the process of apoptosis are closely related to the progression or inhibition of various malignancies. Induction of apoptosis in cancer cells is a promising target for tumor therapy. In this study, circRNAs were investigated as being central to the induction or inhibition of apoptosis in CRC. It is hoped that through targeted changes in the function of these biomolecules, better outcomes will be achieved in cancer treatment. Perhaps better outcomes for cancer treatment can be achieved by using new methods and modifying the expression of these nucleic acids. However, using this method may come with challenges and limitations.
Collapse
Affiliation(s)
- Pejman Molaei
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Savari
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Mahdavinezhad
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Zhao S, Ly A, Mudd JL, Rozycki EB, Webster J, Coonrod E, Othoum G, Luo J, Dang H, Fields RC, Maher C. Characterization of cell-type specific circular RNAs associated with colorectal cancer metastasis. NAR Cancer 2023; 5:zcad021. [PMID: 37213253 PMCID: PMC10198730 DOI: 10.1093/narcan/zcad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy and a leading cause of cancer deaths in the United States. More than half of CRC patients develop metastatic disease (mCRC) with an average 5-year survival rate of 13%. Circular RNAs (circRNAs) have recently emerged as important tumorigenesis regulators; however, their role in mCRC progression remains poorly characterized. Further, little is known about their cell-type specificity to elucidate their functions in the tumor microenvironment (TME). To address this, we performed total RNA sequencing (RNA-seq) on 30 matched normal, primary and metastatic samples from 14 mCRC patients. Additionally, five CRC cell lines were sequenced to construct a circRNA catalog in CRC. We detected 47 869 circRNAs, with 51% previously unannotated in CRC and 14% novel candidates when compared to existing circRNA databases. We identified 362 circRNAs differentially expressed in primary and/or metastatic tissues, termed circular RNAs associated with metastasis (CRAMS). We performed cell-type deconvolution using published single-cell RNA-seq datasets and applied a non-negative least squares statistical model to estimate cell-type specific circRNA expression. This predicted 667 circRNAs as exclusively expressed in a single cell type. Collectively, this serves as a valuable resource, TMECircDB (accessible at https://www.maherlab.com/tmecircdb-overview), for functional characterization of circRNAs in mCRC, specifically in the TME.
Collapse
Affiliation(s)
- Sidi Zhao
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Amy Ly
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Jacqueline L Mudd
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Emily B Rozycki
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Jace Webster
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Emily Coonrod
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Ghofran Othoum
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Jingqin Luo
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63108, USA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Ha X Dang
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Ryan C Fields
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63108, USA
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63108, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO 63108, USA
| |
Collapse
|
14
|
Taheriazam A, Bayanzadeh SD, Heydari Farahani M, Mojtabavi S, Zandieh MA, Gholami S, Heydargoy MH, Jamali Hondori M, Kangarloo Z, Behroozaghdam M, Khorrami R, Sheikh Beig Goharrizi MA, Salimimoghadam S, Rashidi M, Hushmandi K, Entezari M, Hashemi M. Non-coding RNA-based therapeutics in cancer therapy: An emphasis on Wnt/β-catenin control. Eur J Pharmacol 2023; 951:175781. [PMID: 37179043 DOI: 10.1016/j.ejphar.2023.175781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Non-coding RNA transcripts are RNA molecules that have mainly regulatory functions and they do not encode proteins. microRNAs (miRNAs), lncRNAs and circRNAs are major types of this family and these epigenetic factors participate in disease pathogenesis, especially cancer that their abnormal expression may lead to cancer progression. miRNAs and lncRNAs possess a linear structure, whereas circRNAs possess ring structures and high stability. Wnt/β-catenin is an important factor in cancer with oncogenic function and it can increase growth, invasion and therapy resistance in tumors. Wnt upregulation occurs upon transfer of β-catenin to nucleus. Interaction of ncRNAs with Wnt/β-catenin signaling can determine tumorigenesis. Wnt upregulation is observed in cancers and miRNAs are able to bind to 3'-UTR of Wnt to reduce its level. LncRNAs can directly/indirectly regulate Wnt and in indirect manner, lncRNAs sponge miRNAs. CircRNAs are new emerging regulators of Wnt and by its stimulation, they increase tumor progression. CircRNA/miRNA axis can affect Wnt and carcinogenesis. Overall, interaction of ncRNAs with Wnt can determine proliferation rate, migration ability and therapy response of cancers. Furthermore, ncRNA/Wnt/β-catenin axis can be utilized as biomarker in cancer and for prognostic applications in patients.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e Kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Heydargoy
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Microbiology, Shahr-e Ghods Branch, Azad Islamic University, Tehran, Iran
| | - Maryam Jamali Hondori
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Kangarloo
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Lin RY, Huang ZM. Hsa_circ_0079480 enhances cell proliferation, migration, and invasion in colorectal cancer through miR-498/ATP5E axis. Kaohsiung J Med Sci 2023; 39:209-220. [PMID: 36625260 DOI: 10.1002/kjm2.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023] Open
Abstract
Circular RNAs play critical roles in tumorigenesis. hsa_circ_0079480 was reported to be upregulated in colorectal cancer (CRC). However, its specific molecule in CRC is poorly understood. Hsa_circ_0079480, miR-498, and ATP5E expressions in CRC tissues and CRC cells were determined using quantitative real-time polymerase chain reaction assay. ATP5E protein level was assessed using Western blot. Cell proliferation, migration, and invasion were examined by 3-(4, 5-Dimethylthiazolyl2)-2, 5-diphenyltetrazolium bromide assay and Transwell assays, respectively. Dual-luciferase reporter gene assay was performed to analyze the interactions between hsa_circ_0079480, miR-498, and ATP5E. This study results showed that hsa_circ_0079480 and ATP5E expressions were significantly increased in CRC tissues and CRC cells, while miR-498 was downregulated. Hsa_circ_0079480 knockdown dramatically suppressed CRC cell proliferation, migration, and invasion. Meanwhile, it turned out that hsa_circ_0079480 knockdown inhibited CRC tumor growth in vivo. Hsa_circ_0079480 could negatively regulate miR-498 expression by directly targeting miR-498. MiR-498 overexpression dramatically inhibited CRC cell malignant behaviors. miR-498 negatively regulated ATP5E expression by directly binding to ATP5E. ATP5E knockdown suppressed CRC cell malignant behaviors. ATP5E overexpression mitigated the inhibitory effect of hsa_circ_0079480 on CRC cell malignant behaviors. Since hsa_circ_0079480 knockdown inhibited CRC cells malignant behaviors through regulation of the miR-498/ATP5E axis, it can be concluded that hsa_circ_0079480 might have great potential as therapeutic target for CRC.
Collapse
Affiliation(s)
- Ruo-Yang Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhi-Ming Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Yang B, Zhang B, Qi Q, Wang C. CircRNA has_circ_0017109 promotes lung tumor progression via activation of Wnt/β-catenin signaling due to modulating miR-671-5p/FZD4 axis. BMC Pulm Med 2022; 22:443. [PMID: 36434577 PMCID: PMC9700975 DOI: 10.1186/s12890-022-02209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 10/29/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Accumulating evidence highlights the critical roles of circular RNAs (circRNAs) in the malignant progression of cancers. In this study, we investigated the expression pattern of a newly identified circRNA (hsa_circ_0017109) in non-small cell lung cancer (NSCLC), and examined its downstream molecular targets. METHODS Quantitative real-time PCR (qRT-PCR) and Western blotting (WB) were conducted to quantify gene and protein expression. In vitro functional assays such as colony formation assay, cell counting kit-8 (CCK-8) and flow cytometry were used to study cell proliferation and apoptosis. RNA pull-down assay, luciferase reporter assay and RNA immunoprecipitation were performed to validate molecular interaction. Mouse xenograft model of NSCLC cells was used to assess the role of circ_0017109 in tumorigenesis. RESULTS Circ_0017109 was upregulated in NSCLC tumor samples and cells. Silencing circ_0017109 impaired cell proliferation and promoted apoptosis in NSCLC cells, and circ_0017109 knockdown suppressed in vivo tumorigenesis of NSCLC cells in mouse xenograft model. MiR-671-5p was identified as a target of circ_0017109, and circ_0017109 negatively impacted on miR-671-5p expression. MiR-671-5p downregulated FZD4 and dampened the activity of Wnt/β-catenin signaling pathway. Circ_0017109 modulated FZD4 expression by suppressing miR-671-5p activity. CONCLUSIONS Elevated circ_0017109 expression promotes tumor progression of NSCLC by modulating miR-671-5p/FZD4/β-catenin axis.
Collapse
Affiliation(s)
- Bo Yang
- grid.411918.40000 0004 1798 6427Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China
| | - Bin Zhang
- grid.411918.40000 0004 1798 6427Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China
| | - Qi Qi
- grid.411918.40000 0004 1798 6427Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China
| | - Changli Wang
- grid.411918.40000 0004 1798 6427Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China
| |
Collapse
|
18
|
Beni FA, Kazemi M, Dianat-Moghadam H, Behjati M. MicroRNAs regulating Wnt signaling pathway in colorectal cancer: biological implications and clinical potentials. Funct Integr Genomics 2022; 22:1073-1088. [DOI: 10.1007/s10142-022-00908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
|
19
|
Volovat SR, Augustin I, Zob D, Boboc D, Amurariti F, Volovat C, Stefanescu C, Stolniceanu CR, Ciocoiu M, Dumitras EA, Danciu M, Apostol DGC, Drug V, Shurbaji SA, Coca LG, Leon F, Iftene A, Herghelegiu PC. Use of Personalized Biomarkers in Metastatic Colorectal Cancer and the Impact of AI. Cancers (Basel) 2022; 14:4834. [PMID: 36230757 PMCID: PMC9562853 DOI: 10.3390/cancers14194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer is a major cause of cancer-related death worldwide and is correlated with genetic and epigenetic alterations in the colonic epithelium. Genetic changes play a major role in the pathophysiology of colorectal cancer through the development of gene mutations, but recent research has shown an important role for epigenetic alterations. In this review, we try to describe the current knowledge about epigenetic alterations, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators and the prognostic and predictive biomarkers in metastatic colorectal disease that can allow increases in the effectiveness of treatments. Additionally, the intestinal microbiota's composition can be an important biomarker for the response to strategies based on the immunotherapy of CRC. The identification of biomarkers in mCRC can be enhanced by developing artificial intelligence programs. We present the actual models that implement AI technology as a bridge connecting ncRNAs with tumors and conducted some experiments to improve the quality of the model used as well as the speed of the model that provides answers to users. In order to carry out this task, we implemented six algorithms: the naive Bayes classifier, the random forest classifier, the decision tree classifier, gradient boosted trees, logistic regression and SVM.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Daniela Zob
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eduard Alexandru Dumitras
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Anesthesiology and Intensive Care, Regional Institute of Oncology, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Vasile Drug
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Sinziana Al Shurbaji
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Lucia-Georgiana Coca
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Florin Leon
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| | - Adrian Iftene
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Paul-Corneliu Herghelegiu
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| |
Collapse
|
20
|
Gao H, Chen W, Pan G, Liu H, Qian J, Tang W, Wang W, Qian S. A regulatory circuit of lncRNA NLGN1-AS1 and Wnt signalling controls clear cell renal cell carcinoma phenotypes through FZD4-modulated pathways. Aging (Albany NY) 2022; 15:15624-15639. [PMID: 36170021 PMCID: PMC10781459 DOI: 10.18632/aging.204263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent evidence has indicated that long non-coding RNAs (lncRNAs) were emerged as key molecules in clear cell renal cell carcinoma (ccRCC). TCGA database showed that the expression level of lncRNA NLGN1-AS1 was up-regulated in ccRCC; However, whether NLGN1-AS1 implicated in the malignant progression of ccRCC remained unclear. METHODS Based on TCGA database, candidate lncRNAs were selected and quantitative real-time PCR (qRT-PCR) was utilized to verify the expression levels of candidate lncRNAs in human ccRCC tissues. Loss-of-function experiments were performed to examine the biological functions of NLGN1-AS1 both in vitro and in vivo. According to bioinformatics analysis, fluorescence reporter assays and rescue experiments, the underlying mechanisms of NLGN1-AS1 in ccRCC cell lines were so clearly understood. RESULTS As a novel lncRNA, NLGN1-AS1 was up-regulated in ccRCC cell lines and associated with poor prognosis of and ccRCC patients, which was correlated with the progression of ccRCC. Functionally, the down-regulation of NLGN1-AS1 significantly decreased the proliferation of ccRCC cells both in vitro and in vivo. Bioinformatics analysis and luciferase report assays identified that miR-136-5p was a direct target of NLGN1-AS1. We also determined that FZD4 were inhibitory targets of miR-136-5p, and that Wnt/β-catenin signaling was inhibited by both NLGN1-AS1 knockdown and miR-136-5p over-expression. In addition, we found that the suppression of proliferation and the inhibition of Wnt/β-catenin pathway induced by NLGN1-AS1 knockdown would require the over-expression of FZD4. CONCLUSIONS Our findings suggested that lncRNA NLGN1-AS1 could promote the progression of ccRCC by targeting miR-136-5p/FZD4 and Wnt/β-catenin pathway, and might serve as a novel potential therapeutic target to inhibit the progression of ccRCC.
Collapse
Affiliation(s)
- Haifeng Gao
- Department of Urology, Binhai County People’s Hospital, Yancheng 224500, China
| | - Wei Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Gaojian Pan
- Department of Urology, Yancheng Third People’s Hospital, Yancheng 224000, China
| | - Hui Liu
- Department of Urology, Binhai County People’s Hospital, Yancheng 224500, China
| | - Jinke Qian
- Department of Urology, Binhai County People’s Hospital, Yancheng 224500, China
| | - Weijun Tang
- Department of Oncology, Huaian Hospital of Huaian City, Huai’an 223200, China
| | - Wei Wang
- Department of Oncology, Huaian Hospital of Huaian City, Huai’an 223200, China
| | - Shilei Qian
- Department of Urology, Binhai County People’s Hospital, Yancheng 224500, China
| |
Collapse
|
21
|
Elabd NS, Soliman SE, Elhamouly MS, Gohar SF, Elgamal A, Alabassy MM, Soliman HA, Gadallah AA, Elbahr OD, Soliman G, Saleh AA. Long Non-Coding RNAs ASB16-AS1 and AFAP1-AS1: Diagnostic, Prognostic Impact and Survival Analysis in Colorectal Cancer. Appl Clin Genet 2022; 15:97-109. [PMID: 35937710 PMCID: PMC9355339 DOI: 10.2147/tacg.s370242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background We aimed to evaluate the diagnostic roles of AFAP1-AS1 and ASB16-AS1 in colorectal cancer and highlight their roles in predicting colorectal cancer patients’ prognosis. Methods In this case–control study, 146 participants were involved. Group I included 47 patients with CRC. Group II composed of 49 patients with benign lesions in the colon, and Group III included 50 apparently normal subjects of coincided age and gender as controls. All participants were subjected to clinical and endoscopic evaluations, CA19-9, CEA, and quantification of relative expression of lncRNAs ASB16-AS1 and AFAP1-AS1. Results CRC patients had significantly elevated expression levels of both lncRNAs in tissue and plasma samples versus benign and control groups (p < 0.001). Despite the higher sensitivity of tissue samples results, the relative expression of both lncRNAs in plasma samples was very encouraging in the discrimination between patients with CRC versus control and benign groups. Furthermore, both lncRNAs could discriminate patients with early-stage CRC (stage I&II) from being colonic lesion and control groups with better sensitivity and specificity presented by ASB16-AS1 in tissue and plasma than results detailed by AFAP1-AS1. High expression levels of ASB16-AS1 in tissue and plasma and tissue lncRNA AFAP1-AS1 are significantly correlated with decreased overall survival (p < 0.001) and reduced progression-free (p < 0.001) compared to low expression in CRC patients. Conclusion We propose the utilization of lncRNA ASB16-AS1 and lncRNA AFAP1-AS1 as biomarkers in diagnosis and prognosis estimation for CRC patients. Moreover, their value in early CRC patients may affect the assortment of target therapy and treatment protocols.
Collapse
Affiliation(s)
- Naglaa S Elabd
- Tropical Medicine Department, Faculty of Medicine - Menoufia University, Menoufia, Egypt
- Correspondence: Naglaa S Elabd, Tropical Medicine, Faculty of Medicine - Menoufia University- Egypt, Cairo, Egypt, Tel +201092304322, Email
| | - Shimaa E Soliman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Moamena S Elhamouly
- Tropical Medicine Department, Faculty of Medicine - Menoufia University, Menoufia, Egypt
| | - Suzy F Gohar
- Clinical Oncology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Ayman Elgamal
- Fellow of Tropical Medicine Department, Faculty of Medicine - Menoufia University, Menoufia, Egypt
| | | | - Haitham A Soliman
- General Medicine Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Abdelnaser A Gadallah
- Internal Medicine Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Osama D Elbahr
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Ghada Soliman
- Clinical Oncology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Amany A Saleh
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
22
|
Novoa Díaz MB, Martín MJ, Gentili C. Tumor microenvironment involvement in colorectal cancer progression via Wnt/β-catenin pathway: Providing understanding of the complex mechanisms of chemoresistance. World J Gastroenterol 2022; 28:3027-3046. [PMID: 36051330 PMCID: PMC9331520 DOI: 10.3748/wjg.v28.i26.3027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) continues to be one of the main causes of death from cancer because patients progress unfavorably due to resistance to current therapies. Dysregulation of the Wnt/β-catenin pathway plays a fundamental role in the genesis and progression of several types of cancer, including CRC. In many subtypes of CRC, hyperactivation of the β-catenin pathway is associated with mutations of the adenomatous polyposis coli gene. However, it can also be associated with other causes. In recent years, studies of the tumor microenvironment (TME) have demonstrated its importance in the development and progression of CRC. In this tumor nest, several cell types, structures, and biomolecules interact with neoplastic cells to pave the way for the spread of the disease. Cross-communications between tumor cells and the TME are then established primarily through paracrine factors, which trigger the activation of numerous signaling pathways. Crucial advances in the field of oncology have been made in the last decade. This Minireview aims to actualize what is known about the central role of the Wnt/β-catenin pathway in CRC chemoresistance and aggressiveness, focusing on cross-communication between CRC cells and the TME. Through this analysis, our main objective was to increase the understanding of this complex disease considering a more global context. Since many treatments for advanced CRC fail due to mechanisms involving chemoresistance, the data here exposed and analyzed are of great interest for the development of novel and effective therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| | - María Julia Martín
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS)-INQUISUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| |
Collapse
|
23
|
circIFITM1/miR-802/Foxp1 Axis Participates in Proliferation and Invasion of Lovo Cells. DISEASE MARKERS 2022; 2022:7366337. [PMID: 35783017 PMCID: PMC9249523 DOI: 10.1155/2022/7366337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
Objective. To explore the role of circIFITM1 and its potential molecular mechanism in colon cancer. Methods. The circIFITM1 in human samples and cell lines of colon cancer was measured via RT-PCR. The cyclicity of circIFITM1 was confirmed by agarose gel electrophoresis and Sanger sequencing, and the stability of circIFITM1 was confirmed by actinomycin D assay. The proliferative and invasive ability was detected by the CCK-8 assay and Transwell assay, respectively. RNA pull-down assay confirmed a combination of circIFITM1 and miRNA. Dual-luciferase reporter gene was used to detect the direct relationship between miRNA and the target gene. Results. circIFITM1 originated from the maternal gene IFITM1and had high stability. It was resistant to processing by actinomycin D. Upregulating circIFITM1 facilitated the proliferation and invasion of Lovo cells, while interfering with circIFITM1 expression inhibited them. circIFITM1 interacted with miR-802, and miR-802 targeted the 3
UTR of FOXP1. The overexpression of circIFITM1 downregulated miR-802 and upregulated FOXP1. Conclusion. circIFITM1 facilitates the proliferative and invasive abilities via miR-802/FOXP1 in Lovo cells.
Collapse
|
24
|
Akhbari MH, Zafari Z, Sheykhhasan M. Competing Endogenous RNAs (ceRNAs) in Colorectal Cancer: A Review. Expert Rev Mol Med 2022; 24:e27. [PMID: 35748050 DOI: 10.1017/erm.2022.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is a common type of cancer and the second leading cause of cancer-related deaths worldwide. Competing endogenous RNAs (ceRNAs) that contain microRNA response elements (MREs) are involved in CRC progression. They can compete with microRNAs (miRNAs) via their MREs, which can combine non-coding and coding RNAs via complex ceRNA networks. This molecular interaction has the potential to affect a wide variety of biological processes, and many cancers can occur as a result of an imbalanced ceRNA network. Recent research indicates that numerous dysregulated RNAs in CRC may function as ceRNAs, regulating multiple biological functions of the tumour, including proliferation, apoptosis, metastasis, invasion and migration. In this review, we discuss the role of protein-coding and non-coding RNAs, such as long non-coding RNAs, circular RNAs and pseudogenes, in the occurrence of ceRNA networks in CRC, and their function in cancer-related pathways, such as Wnt/β-catenin, mitogen-activated protein kinase and transforming growth factor-β signalling pathways. Additionally, we discuss validated ceRNAs associated with CRC biological functions and their potential role as novel prognostic and diagnostic biomarkers. Examining the role of ceRNAs in CRC sheds new light on cancer treatment and pathogenesis.
Collapse
Affiliation(s)
| | - Zahra Zafari
- Department of Biology, Shahed University, Tehran, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| |
Collapse
|
25
|
Circ_0001955 Acts as a miR-646 Sponge to Promote the Proliferation, Metastasis and Angiogenesis of Hepatocellular Carcinoma. Dig Dis Sci 2022; 67:2257-2268. [PMID: 34021822 DOI: 10.1007/s10620-021-07053-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Circular RNA (circRNA) exerts a crucial role in the progression of many cancers, including hepatocellular carcinoma (HCC). However, the function of circ_0001955 in HCC progression has been poorly studied. AIMS Elucidating the role and molecular mechanism of circ_0001955 in HCC progression. METHODS Quantitative real-time PCR was employed to detect the expression of circ_0001955 and miR-646. Cell counting kit 8 assay, Ethynyl-2-deoxyuridine assay, flow cytometry, transwell assay, and tube formation assay were conducted to measure cell proliferation, metastasis, angiogenesis and apoptosis. Dual-luciferase reporter assay and biotin-labeled RNA pull-down assay were performed to analyze the interactions among circ_0001955, miR-646 and frizzled class receptor 4 (FZD4). Moreover, animal experiments were performed to examine the influence of circ_0001955 on HCC tumor growth in vivo. RESULTS Circ_0001955 was a highly expressed circRNA in HCC tissues and cells. Circ_0001955 knockdown inhibited the proliferation, metastasis, angiogenesis, and enhanced the apoptosis of HCC cells. Meanwhile, miR-646 could be sponged by circ_0001955, and its inhibitor could reverse the negative regulation of circ_0001955 knockdown on HCC progression. Further, FZD4 was a target of miR-646, and its overexpression could invert the inhibition effect of miR-646 mimic on HCC progression. Besides, our results also indicated that circ_0001955 promoted FZD4 expression by sponging miR-646. Animal experiment results showed that circ_0001955 silencing restrained HCC tumor growth in vivo. CONCLUSION Our findings suggested that circ_0001955 might play a positive role in HCC progression via regulating the miR-646/FZD4 axis, indicating that circ_0001955 might be a potential therapeutic target for HCC.
Collapse
|
26
|
Lin B, Nan J, Lu K, Zong Y, Fan W. Hsa_circ_0001982 promotes the proliferation, invasion, and multidrug resistance of osteosarcoma cells. J Clin Lab Anal 2022; 36. [PMID: 35576496 PMCID: PMC9279963 DOI: 10.1002/jcla.24493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/15/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common bone cancer mostly seen in people aged 10–25 years. This research aims to clarify the function of hsa_circ_0001982 in osteosarcoma (OS) and its effect on drug resistance, preliminarily exploring its mechanism. Methods The expression of hsa_circ_0001982 and miR‐143 in OS clinical tissues and cells was detected by real‐time fluorescence quantitative polymerase chain reaction (qRT‐PCR), MTT, colony formation assay, and transwell assay assessed cell proliferation, colony formation, migration, and invasion, respectively. The targeted relationship of hsa_circ_0001982 and miR‐143 was verified by a dual‐luciferase reporter assay. Result The expression of hsa_circ_0001982 was significantly increased in OS tissues and cells (MG63), as in well as chemoresistant OS tissues and cells (MG63/Dox). Overexpression of hsa_circ_0001982 promoted proliferation, colony formation, migration, invasion, and multidrug resistance in MG63 cells. By contrast, knockdown of hsa_circ_0001982 markedly reduced the resistance of MG63/Dox cells to doxorubicin (IC50 evidently reduced). Bioinformatic prediction showed that miR‐143 was a target miRNA of hsa_circ_0001982, and a dual‐luciferase reporter assay proved this. Further experiments revealed that miR‐143 expression was notably downregulated in OS tissues, chemoresistant OS tissues, and MG63/Dox cells. Moreover, miR‐143 was negatively correlated with hsa_circ_0001982 in OS cells and tissues. Conclusion The regulation of malignant behaviors such as proliferation, invasion, migration, and multidrug resistance of OS cells by hsa_circ_0001982 may be achieved by targeting miR‐143. Moreover, hsa_circ_0001982 is a potential target for early diagnosis and targeted therapy of OS.
Collapse
Affiliation(s)
- Bochuan Lin
- Department of orthopedic surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Jing Nan
- Department of statistics, Long Nan Hospital, Daqing, Heilongjiang, China
| | - Kai Lu
- Department of vascular surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Yi Zong
- Department of orthopedic surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Wencan Fan
- Department of orthopedic surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| |
Collapse
|
27
|
Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, Li L. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer 2022; 21:108. [PMID: 35513849 PMCID: PMC9074313 DOI: 10.1186/s12943-022-01582-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023] Open
Abstract
CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expression is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.
Collapse
Affiliation(s)
- Chen Xue
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Ganglei Li
- grid.13402.340000 0004 1759 700XDepartment of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Qiuxian Zheng
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Xinyu Gu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Zhengyi Bao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Juan Lu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Lanjuan Li
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| |
Collapse
|
28
|
Maimaiti Y, Zhang N, Zhang Y, Zhou J, Song H, Wang S. CircFAM64A enhances cellular processes in triple-negative breast cancer by targeting the miR-149-5p/CDT1 axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1081-1092. [PMID: 35048507 DOI: 10.1002/tox.23466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Triple-negative breast cancer (TNBC) is a breast cancer subtype without targeted treatment options. Accumulating evidence has demonstrated the roles of circular RNAs in cancer. This study aimed to investigate the expression and function of circFAM64A in TNBC. The GSE101124 dataset from the GEO database was examined to identify the differentially expressed circular RNAs in TNBC. RT-qPCR and western blot analyses were performed to measure gene expression. TNBC cell proliferation, migration, invasion, and cell cycle were assessed using cell counting kit-8, EdU, flow cytometry, wound healing, and transwell invasion experiments. Bioinformatics analysis, RIP, RNA pulldown, and luciferase reporter assays were used to investigate the regulatory mechanism of circFAM64A. In this study, CircFAM64A expression was significantly upregulated in TNBC tissues and cells compared with normal tissues and cells. Overexpression of circFAM64A increased the proliferative, migratory, and invasive capacities of TNBC cells and promoted cell cycle progression. Mechanistically, circFAM64A acted as a molecular sponge for miR-149-5p, and miR-149-5p directly targeted the Cdc10-dependent transcript 1 (CDT1) 3'UTR. Moreover, the high expression of CDT1 is associated with a poor prognosis in patients with breast cancer. Rescue experiments demonstrated that circFAM64A sponged miR-149-5p to increase CDT1 expression, thereby promoting cellular processes in TNBC. Overall, CircFAM64A plays an oncogenic role in TNBC by interacting with miR-149-5p to increase CDT1 expression.
Collapse
Affiliation(s)
- Yusufu Maimaiti
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Ning Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunke Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haiping Song
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuntao Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
29
|
Li J, Ba X, Li J, Li Y, Wu S, Jiang H, Zhang Q. MicroRNA-200a regulates skin pigmentation by targeting WNT5A and FZD4 in Cashmere goats. Res Vet Sci 2022; 147:68-73. [DOI: 10.1016/j.rvsc.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
|
30
|
Long C, Xu QB, Ding L, Huang LJ, Ji Y. Circular RNAs as Diagnostic and Prognostic Indicators of Colorectal Cancer: A Pooled Analysis of Individual Studies. Pathol Oncol Res 2022; 28:1610037. [PMID: 35369570 PMCID: PMC8967936 DOI: 10.3389/pore.2022.1610037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Background: Circular RNAs (circRNAs) have proven as a special subset of endogenous RNAs that are implicated in the tumorigenesis of various cancers. This study sought to evaluate the role of circRNAs in the diagnosis and prognosis of colorectal cancer (CRC). Methods: The online databases were searched for collecting relevant studies on circRNAs as diagnostic and prognostic biomarkers of CRC. Two researchers independently screened literature, extracted data, and evaluated the bias and risks of included studies. The diagnostic and prognostic indicators were merged and analyzed using STATA 12.0 software, and sources of heterogeneity were traced by the sensitivity analysis and the meta-regression test. Results: A total of 29 articles representing 2639 CRC patients were included. The pooled sensitivity, specificity, and area under the curve (AUC) of circRNAs in differentiating CRC from non-tumor control were 0.75 (95% CI: 0.69-0.80) and 0.74 (95% CI: 0.69-0.78) and 0.81, respectively. The survival analysis showed that up-regulations of up-regulated circRNAs were significantly related to dismal survival in CRC patients (HR = 2.38, p < 0.001). A stratified analysis showed that the comprehensive diagnostic value of up-regualted circRNAs in CRC was higher than that of down-regualted circRNAs (AUC: 0.83 vs. 0.77; Z test, p < 0.05). The efficacy of tissue-derived circRNAs in the diagnosis of CRC was equal to that of plasma/serum-derived ones (AUC: 0.81 vs. 0.82; Z test, p > 0.05). Conclusion: Abnormally expressed circRNAs as auxiliary biomarkers present underlying value in the diagnosis and prognosis prediction of CRC.
Collapse
Affiliation(s)
- Cong Long
- Department of Clinical Laboratory, Jingjiang People’s Hospital, Taizhou, China
| | - Qiu-bo Xu
- Department of Clinical Laboratory, Jingjiang People’s Hospital, Taizhou, China
| | - Li Ding
- Department of Clinical Laboratory, Jingjiang People’s Hospital, Taizhou, China
| | - Li-juan Huang
- Department of Clinical Laboratory, Jingjiang People’s Hospital, Taizhou, China
| | - Yong Ji
- Department of General Surgery, Jingjiang People’s Hospital, Taizhou, China
| |
Collapse
|
31
|
Jia Z, An J, Liu Z, Zhang F. Non-Coding RNAs in Colorectal Cancer: Their Functions and Mechanisms. Front Oncol 2022; 12:783079. [PMID: 35186731 PMCID: PMC8847166 DOI: 10.3389/fonc.2022.783079] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. However, the molecular mechanisms underlying CRC remain unclear. Controversies over the exact functions of non-coding RNAs (ncRNAs) in the progression of CRC have been prevailing for multiple years. Recently, accumulating evidence has demonstrated the regulatory roles of ncRNAs in various human cancers, including CRC. The intracellular signaling pathways by which ncRNAs act on tumor cells have been explored, and in CRC, various studies have identified numerous dysregulated ncRNAs that serve as oncogenes or tumor suppressors in the process of tumorigenesis through diverse mechanisms. In this review, we have summarized the functions and mechanisms of ncRNAs (mainly lncRNAs, miRNAs, and circRNAs) in the tumorigenesis of CRC. We also discuss the potential applications of ncRNAs as diagnostic and prognostic tools, as well as therapeutic targets in CRC. This review details strategies that trigger the recognition of CRC-related ncRNAs, as well as the methodologies and challenges of studying these molecules, and the forthcoming clinical applications of these findings.
Collapse
Affiliation(s)
- Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jiaqi An
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Ziyuan Liu
- School of Medicine, Shihezi University, Shihezi, China
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
32
|
Yang BL, Liu GQ, Li P, Li XH. Circular RNA CUL2 regulates the development of colorectal cancer by modulating apoptosis and autophagy via miR-208a-3p/PPP6C. Aging (Albany NY) 2022; 14:497-508. [PMID: 35027503 PMCID: PMC8791207 DOI: 10.18632/aging.203827] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Aim: To explore the function of circular RNA CUL2 (circCUL2) in colorectal cancer progression. Method: RT-PCR was carried out to detect the expression of circCUL2 in colorectal cancer tissues and cell lines. Western blot and immunofluorescence were used to determine the level of autophagy. CCK-8, clone formation assay, and EdU staining were used to assess the proliferation ability. Luciferase assay verified the relationship between miR-208a-3p and circCUL2 /PPP6C. The xenograft mouse model was used to confirm the function of circCUL2 in vivo. Results: The expression level of circCUL2 was down-regulated in colorectal cancer tissues and cell lines. Forcing expression of circCUL2 inhibited proliferation ability, induced apoptosis, and autophagy in colorectal cancer cells. Luciferase assay verified that miR-208a-3p could bind with circCUL2/PPP6C. Overexpression of circCUL2 could inhibit cancer progression via targeting the miR-208a-3p/PPP6C signal pathway. Conclusion: CircCUL2 participates in progression via the miR-208a-3p/PPP6C axis in colorectal cancer. CircCUL2 would be an underlying target for the diagnosis and therapy of colorectal cancer.
Collapse
Affiliation(s)
- Bin-Lin Yang
- Department of Gastrointestinal Surgery and Anal Diseases, Affiliated Hospital of Weifang Medical College, Weifang, Shandong Province, China
| | - Guo-Qiang Liu
- Department of Gastrointestinal Surgery and Anal Diseases, Affiliated Hospital of Weifang Medical College, Weifang, Shandong Province, China
| | - Ping Li
- Basic Medicine Department, Weifang Nursing Vocational College, Weifang, Shandong Province, China
| | - Xiao-Hui Li
- Department of Gastrointestinal Surgery and Anal Diseases, Affiliated Hospital of Weifang Medical College, Weifang, Shandong Province, China
| |
Collapse
|
33
|
Singh D, Kesharwani P, Alhakamy NA, Siddique HR. Accentuating CircRNA-miRNA-Transcription Factors Axis: A Conundrum in Cancer Research. Front Pharmacol 2022; 12:784801. [PMID: 35087404 PMCID: PMC8787047 DOI: 10.3389/fphar.2021.784801] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are the newly uncovered class of non-coding RNAs being cognized as profound regulators of gene expression in developmental and disease biology. These are the covalently closed RNAs synthesized when the pre-mRNA transcripts undergo a back-splicing event. In recent years, circRNAs are gaining special attention in the scientific world and are no longer considered as "splicing noise" but rather structurally stable molecules having multiple biological functions including acting as miRNA sponges, protein decoys/scaffolds, and regulators of transcription and translation. Further, emerging evidence suggests that circRNAs are also differentially expressed in multiple cancers where they play oncogenic roles. In addition, circRNAs in association with miRNAs change the expression patterns of multiple transcription factors (TFs), which play important roles in cancer. Thus, the circRNA-miRNA-TFs axis is implicated in the progression or suppression of various cancer types and plays a role in cell proliferation, invasion, and metastasis. In this review article, we provide an outline of the biogenesis, localization, and functions of circRNAs specifically in cancer. Also, we highlight the regulatory function of the circRNA-miRNA-TFs axis in the progression or suppression of cancer and the targeting of this axis as a potential therapeutic approach for cancer management. We anticipate that our review will contribute to expanding the knowledge of the research community about this recent and rapidly growing field of circRNAs for further thorough investigation which will surely help in the management of deadly disease cancer.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hifzur R. Siddique
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
34
|
Circular RNA CCDC66 Improves Murine Double Minute 4 (MDM4) Expression through Targeting miR-370 in Colorectal Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7723995. [PMID: 35069793 PMCID: PMC8767369 DOI: 10.1155/2022/7723995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
Introduction Colorectal cancer (CRC), a common digestive tract tumor that contains colon and rectal cancer, is one of the three most common cancers globally. circRNAs are involved in the occurrence and development of CRC, but the mechanism of how they participate in this process remains unclear. Methods We adopted PCR for expression measure, CCK-8 for cell proliferation detection, Transwell for cell migration and invasion detection, and dual-luciferase reporter assays to detect the potential downstream targets of CCDC66 in CRC. Results This study showed that circRNA CCDC66 was overexpressed in CRC tissues, and after knockdown, it inhibited the proliferation, migration, and invasion of CRC cells (RKO and HCT-116) in vitro. In addition, the dual-luciferase reporter assay showed that there was a binding site between circCCDC66 and miR-370, as well as between miR-370 and murine double minute 4 (MDM4). That is, circCCDC66 upregulated the expression of MDM4 through competitively binding to miR-370. The expression of circCCDC66 in CRC tissues was positively correlated with MDM4 and negatively correlated with miR-370. Conclusion In summary, our results indicate that circCCDC66 is a key upregulation of CRC. circCCDC66 upregulates MDM4 through competitive binding to miR-370, thereby enhancing the metastatic ability of CRC cells and promoting the development of CRC.
Collapse
|
35
|
Ji Y, Lv J, Sun D, Huang Y. Therapeutic strategies targeting Wnt/β‑catenin signaling for colorectal cancer (Review). Int J Mol Med 2022; 49:1. [PMID: 34713301 PMCID: PMC8589460 DOI: 10.3892/ijmm.2021.5056] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common carcinomas. Although great progress has been made in recent years, CRC survival remains unsatisfactory due to high metastasis and recurrence. Understanding the underlying molecular mechanisms of CRC tumorigenesis and metastasis has become increasingly important. Recently, aberrant Wnt/β‑catenin signaling has been reported to be strongly associated with CRC tumorigenesis, metastasis and recurrence. Therefore, the Wnt/β‑catenin signaling pathway has potential value as a therapeutic target for CRC. In the present review, the dysregulation of this pathway in CRC and the promoting or suppressing function of therapeutic targets on CRC were explored. In addition, the interaction between this pathway and epithelial‑mesenchymal transition (EMT), cell stemness, mutations, metastasis‑related genes and tumor angiogenesis in CRC cells were also investigated. Numerous studies on this pathway may help identify the potential diagnostic and prognostic markers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Jian Lv
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Di Sun
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Yufeng Huang
- Department of Oncology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
36
|
Qi J, Wang T, Zhang Z, Yin Z, Liu Y, Ma L, Pei S, Dong Z, Han G. Circ-Ctnnb1 regulates neuronal injury in spinal cord injury through Wnt/β-catenin signaling pathway. Dev Neurosci 2021; 44:131-141. [PMID: 34929706 DOI: 10.1159/000521172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
STUDY DESIGN Spinal cord injury (SCI) rat model and cell model were established for in vivo and in vitro experiments. Functional assays were utilized to explore the role of the circRNAs derived from catenin beta 1 (mmu_circ_0001859, circ-Ctnnb1 herein) in regulating neuronal cell viability and apoptosis. Bioinformatics analysis and mechanism experiments were conducted to assess the underlying molecular mechanism of circ-Ctnnb1. OBJECTIVE We aimed to probe into the biological function of circ-Ctnnb1 in neuronal cells of SCI. METHODS The rat model of SCI and hypoxia-induced cell model were constructed to examine circ-Ctnnb1 expression in SCI through quantitative reverse transcription real-time polymerase chain reaction (RT-qPCR). Basso, Beattie and Bresnahan (BBB) score was utilized for evaluating the neurological function. Terminal-deoxynucleoitidyl Transferase Mediated Nick End labeling (TUNEL) assays were performed to assess the apoptosis of neuronal cells. RNase R and Actinomycin D (ActD) were used to treat cells to evaluate the stability of circ-Ctnnb1. RESULTS Circ-Ctnnb1 was highly expressed in SCI rat models and hypoxia-induced neuronal cells, and its deletion elevated the apoptosis rate of hypoxia-induced neuronal cells. Furthermore, circ-Ctnnb1 activated the Wnt/β-catenin signaling pathway via sponging mircoRNA-205-5p (miR-205-5p) to up-regulate Ctnnb1 and Wnt family member 2B (Wnt2b). CONCLUSION Circ-Ctnnb1 promotes SCI through regulating Wnt/β-catenin signaling via modulating the miR-205-5p/Ctnnb1/Wnt2b axis.
Collapse
Affiliation(s)
- Jialong Qi
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China
| | - Tao Wang
- Spine Surgery, Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhidong Zhang
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China
| | - Zongsheng Yin
- Joint Surgery Center, Department of Orthopaedics, The First Hospital of Anhui Medical University, Hefei, China
| | - Yiming Liu
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China,
| | - Li Ma
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China
| | - Shaobao Pei
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China
| | - Zhou Dong
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China
| | - Guosong Han
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China
| |
Collapse
|
37
|
Zhang G, Liu Z, Zhong J, Lin L. Circ-ACAP2 facilitates the progression of colorectal cancer through mediating miR-143-3p/FZD4 axis. Eur J Clin Invest 2021; 51:e13607. [PMID: 34085707 DOI: 10.1111/eci.13607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/09/2021] [Accepted: 05/15/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) play crucial roles in multiple cancers, including colorectal cancer (CRC). Here, we explored the role of circRNA ArfGAP with coiled-coil, ankyrin repeat and PH domains 2 (circ-ACAP2) in the progression and radioresistance of CRC. METHODS Quantitative real-time polymerase chain reaction (qPCR) and Western blot assay were used to detect RNA and protein expression, respectively. The proliferation, apoptosis, migration, invasion and radioresistance of CRC cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, transwell migration assay, transwell invasion assay and colony formation assay. The target interaction between microRNA-143-3p (miR-143-3p) and circ-ACAP2 or frizzled class receptor 4 (FZD4) was verified by dual-luciferase reporter assay. Murine xenograft model was established to explore the role of circ-ACAP2 in vivo. RESULTS The expression of circ-ACAP2 was prominently enhanced in CRC tissues and cell lines. Circ-ACAP2 facilitated the proliferation, migration, invasion and radioresistance whereas inhibited the apoptosis of CRC cells. MiR-143-3p was a direct target of circ-ACAP2 in CRC cells. Circ-ACAP2 promoted the progression and radioresistance of CRC partly by sponging miR-143-3p. MiR-143-3p interacted with the 3' untranslated region (3'UTR) of FZD4 in CRC cells, and FZD4 overexpression partly reversed miR-143-3p-mediated effects in CRC cells. Wnt/β-catenin signalling was modulated by circ-ACAP2/miR-143-3p/FZD4 axis in CRC cells. CONCLUSION Circ-ACAP2 contributed to the development and radioresistance of CRC partly through targeting miR-143-3p/FZD4 axis, which provided novel potential diagnostic and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Guifeng Zhang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, P.R. China
| | - Zhenhua Liu
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, P.R. China
| | - Jiangming Zhong
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, P.R. China
| | - Li Lin
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, P.R. China
| |
Collapse
|
38
|
Huang J, Yu S, Ding L, Ma L, Chen H, Zhou H, Zou Y, Yu M, Lin J, Cui Q. The Dual Role of Circular RNAs as miRNA Sponges in Breast Cancer and Colon Cancer. Biomedicines 2021; 9:biomedicines9111590. [PMID: 34829818 PMCID: PMC8615412 DOI: 10.3390/biomedicines9111590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) and colon cancer (CRC) are the two most deadly cancers in the world. These cancers partly share the same genetic background and are partially regulated by the same genes. The outcomes of traditional chemoradiotherapy and surgery remain suboptimal, with high postoperative recurrence and a low survival rate. It is, therefore, urgent to innovate and improve the existing treatment measures. Many studies primarily reported that the microRNA (miRNA) sponge functions of circular RNA (circRNA) in BC and CRC have an indirect relationship between the circRNA–miRNA axis and malignant behaviors. With a covalent ring structure, circRNAs can regulate the expression of target genes in multiple ways, especially by acting as miRNA sponges. Therefore, this review mainly focuses on the roles of circRNAs as miRNA sponges in BC and CRC based on studies over the last three years, thus providing a theoretical reference for finding new therapeutic targets in the future.
Collapse
Affiliation(s)
- Jiashu Huang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Shenghao Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Lingyuan Ma
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongjian Chen
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hui Zhou
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Yayan Zou
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence: ; Tel.: +86-871-65031412
| |
Collapse
|
39
|
Li C, Zhu L, Fu L, Han M, Li Y, Meng Z, Qiu X. CircRNA NRIP1 promotes papillary thyroid carcinoma progression by sponging mir-195-5p and modulating the P38 MAPK and JAK/STAT pathways. Diagn Pathol 2021; 16:93. [PMID: 34689819 PMCID: PMC8543861 DOI: 10.1186/s13000-021-01153-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have become a hot topic in the area of tumor biology due to its closed structure and the post-transcriptional regulatory effect. This study aims to clarify the roles of circRNA nuclear receptor-interacting protein 1 (NRIP1; circNRIP1) and the possible mechanisms in papillary thyroid carcinoma (PTC). METHODS The real-time PCR was used to detect the expression level of CircRNA NRIP1 in PTC specimens and cell lines. The effects of CircRNA NRIP1 and miR-195-5p on the PTC cell functions were detected by MTT, transwell, and flow cytometry assays. Dual-luciferase reporter assays and pull down assays were used to verify the association between circRNA NRIP1 and miR-195-5p. The murine xenograft models were constructed to detect the roles of CircRNA NRIP1 and miR-195-5p. Western blot was applied to detect the effects of CircRNA NRIP1 and miR-195-5p on the P38 MAPK and JAK/STAT singling pathways. RESULTS CircRNA NRIP1 was over-expressed in PTC tissues and cells and the high levels of CircRNA NRIP1 were correlated with advanced PTC stage. Depletion of CircRNA NRIP1 inhibited PTC cell proliferation, invasion, while accelerated apoptosis. miR-195-5p upregulation repressed proliferation and invasion capabilities, and accelerated apoptosis of PTC cell lines and restraining the growth of tumor xenografts, while the functions were reversed following CircRNA NRIP1 overexpression in PTC cells and tumor xenografts. Besides, the protein levels of p-p38, p-JAK2 and p-STAT1 were remarkably down-regulated in miR-195-5p overexpressed PTC cells and tumor xenografts, whereas CircRNA NRIP1 up-regulation overturned the impacts. CONCLUSIONS In conclusion, CircRNA NRIP1 promoted PTC progression by accelerating PTC cells proliferation, invasion and tumor growth, while impeding apoptosis by way of sponging miR-195-5p and regulating the P38 MAPK and JAK/STAT pathways.
Collapse
Affiliation(s)
- Chuang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China
- Department of Thyroid and Neck, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Lijuan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Lijun Fu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ya Li
- Institute for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450000, Zhengzhou, China
| | - Zhaozhong Meng
- Department of Thyroid and Neck, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China.
| |
Collapse
|
40
|
Miao L, Feng G, Yuan H. CircRNAs: a family number of miRNA regulatory transcriptome in laryngeal carcinoma. J Clin Lab Anal 2021; 35:e24038. [PMID: 34617636 PMCID: PMC8605118 DOI: 10.1002/jcla.24038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/22/2023] Open
Abstract
Laryngeal carcinoma (LC) is a common head and neck cancer, which is the result of mutational changes due to gene dysregulation and etiological factors such as tobacco and smoking. A large number of patients received a poor prognosis due to diagnosis at an advanced stage. This highlights the need for definitive, early, and efficient diagnoses. With rapid development of high‐throughput sequencing, circular RNA (circRNA) has been reported to play a pivotal role in cancer. CircRNA functions as a microRNA (miRNA) sponge in the regulation of mRNA expression, forming circRNA‐miRNA regulatory axis. In this review, we described the axis in LC. The result indicated that CDR1as, hsa_circ_0042823, hsa_circ_0023028, circPARD3, hsa_circ_103862, hsa_circ_0000218, circMYLK, circCORO1C, hsa_circ_100290, circ‐CCND1, hsa_circ_0057481, circFLAN, and circRASSF2 expressed higher in LC, whereas, hsa_circ_0036722 and hsa_circ_0042666 expressed lower. The circRNAs regulated the target genes by sponging miRNAs and contributed to the pathogenesis of LC.
Collapse
Affiliation(s)
- Limin Miao
- Department of Geriatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Guanying Feng
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Smith AJ, Sompel KM, Elango A, Tennis MA. Non-Coding RNA and Frizzled Receptors in Cancer. Front Mol Biosci 2021; 8:712546. [PMID: 34671643 PMCID: PMC8521042 DOI: 10.3389/fmolb.2021.712546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Frizzled receptors have been long recognized for their role in Wnt/β-catenin signaling, a pathway known for its tumorigenic effects. More recent studies of frizzled receptors include efforts to understand non-coding RNA (ncRNA) regulation of these receptors in cancer. It has become increasingly clear that ncRNA molecules are important for regulating the expression of both oncogenic and tumor-suppressive proteins. The three most commonly described ncRNA molecules are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Here, we review ncRNA molecules that directly or indirectly affect frizzled protein expression and downstream signaling. Exploring these interactions highlights the potential of incorporating ncRNA molecules into cancer prevention and therapy strategies that target frizzled receptors. Previous investigations of frizzled receptors and ncRNA have established strong promise for a role in cancer progression, but additional studies are needed to provide the substantial pre-clinical evidence required to translate findings to clinical applications.
Collapse
|
42
|
Yang L, Bi T, Zhou S, Lan Y, Zhang R. CircRASSF2 facilitates the proliferation and metastasis of colorectal cancer by mediating the activity of Wnt/β-catenin signaling pathway by regulating the miR-195-5p/FZD4 axis. Anticancer Drugs 2021; 32:919-929. [PMID: 33929991 DOI: 10.1097/cad.0000000000001084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Circular RNAs (circRNA) are a key regulator of cancer progression, including colorectal cancer (CRC). Nevertheless, the role of circRASSF2 in CRC remains unclear. Quantitative real-time PCR was used to measure the expression of circRASSF2 and miR-195-5p. Cell counting kit 8 assay, colony formation assay, flow cytometry and transwell assay were used to determine the proliferation, apoptosis, migration and invasion of cells, respectively. The levels of proliferation, metastasis and Wnt/β-catenin signaling pathway-related proteins, as well as Frizzled 4 (FZD4) protein, were determined using western blot analysis. Furthermore, a dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay were used to illumine the mechanism of circRASSF2. Animal experiments were used to determine the role of circRASSF2 in the tumor growth of CRC in vivo. Our study reported that circRASSF2 was upregulated in CRC tissues and cells, and its high expression was related to the poor prognosis of CRC patients. CircRASSF2 knockdown could inhibit proliferation, migration, invasion, and enhance apoptosis in CRC cells, and its overexpression had the opposite effect. Besides, our data revealed that circRASSF2 could sponge miR-195-5p, and miR-195-5p could target FZD4. The rescue experiments indicated that both miR-195-5p inhibitor and FZD4 overexpression could reverse the negative regulation of circRASSF2 silencing on CRC progression. Moreover, circRASSF2 could positively regulate the activity of Wnt/β-catenin signaling pathway by the miR-195-5p/FZD4 axis. In addition, circRASSF2 knockdown restrained the tumor growth of CRC in vivo. Our findings suggested that circRASSF2 might function as a tumor promoter to accelerate the progression of CRC via regulating the miR-195-5p/FZD4/Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Leilei Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai City, Zhejiang Province, China
| | | | | | | | | |
Collapse
|
43
|
Liu N, Jiang F, Chen Z. A Preliminary Study on the Pathogenesis of Colorectal Cancer by Constructing a Hsa-circRNA-0067835-miRNA-mRNA Regulatory Network. Onco Targets Ther 2021; 14:4645-4658. [PMID: 34511934 PMCID: PMC8418363 DOI: 10.2147/ott.s319300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background Increasing evidence shows that circular RNAs (circRNAs) play a key role in the development of colorectal cancer (CRC). An interesting candidate RNA in this context is hsa-circRNA-0067835 (circIFT80), but its network of actions is still unclear. Methods Big data mining technology was used to explore the downstream microRNAs (miRNA) and messenger RNAs (mRNA) of the circIFT80 network. A regulatory network, comprising circIFT80 and its corresponding miRNAs and mRNAs, was derived to preliminarily explore the potential mechanism of circIFT80 in CRC. Finally, the proposed regulatory network was experimentally verified at the cellular level. Results A total of 6 miRNAs were screened, of which hsa-miR-197-3p, hsa-miR-370-3p and hsa-miR-377-5p may be the most potential downstream miRNAs of hsa-circRNA-0067835 in CRC. A total of 74 up-regulated genes with opposite miRNA expression were selected for subsequent verification. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases revealed that the target genes occurred more frequently in cancer-related pathways. In addition, protein-protein interaction (PPI) analysis of the target genes revealed a set of involved genes from which the hubTop 10 genes were selected for further analysis. Moreover, circRNA-miRNA-hubTop 10 mRNA networks were constructed. According to this analysis, circIFT80 simultaneously regulates hsa-miR-197-3p, hsa-miR-370-3p, and hsa-miR-377-5p, among which hsa-miR-370-3p seems to be associated with further genes that may be relevant to CRC development. Therefore, the proposed circIFT80/hsa-miR-370-3p/WNT7B, SLC1A5, RCBTB1 and COL6A6 signal axes were subjected to experimental verification. It could be shown that circIFT80 was up-regulated in CRC tissues. The circIFT80 was able to inhibit apoptosis and promote proliferation, migration and invasion. Moreover, circIFT80 inhibited the expression of hsa-miR-370-3p and promoted the expression of COL6A6, RCBTB1, SLC1A5 and WNT7B in CRC cell lines. Dual luciferase reporter assays further validated that circIFT80 is able to bind to hsa-miR-370-3p which in turn targets WNT7B. Conclusion The circIFT80 may play a role in carcinogenesis through the new circIFT80/hsa-miR-370-3p/WNT7B signal axis. These findings may provide potential biomarkers and therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Fan Jiang
- Department of the Center of Gerontology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Zhiju Chen
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| |
Collapse
|
44
|
Fang G, Chen T, Mao R, Huang X, Ji L. Circular RNA circ_0089153 acts as a competing endogenous RNA to regulate colorectal cancer development by the miR-198/SUMO-specific peptidase 1 (SENP1) axis. Bioengineered 2021; 12:5664-5678. [PMID: 34516314 PMCID: PMC8806507 DOI: 10.1080/21655979.2021.1967076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has indicated the implications of circular RNAs (circRNAs) in the development of colorectal cancer (CRC). In this study, we investigated the functional role and mechanism of circ_0089153 in CRC pathogenesis. The expression levels of circ_0089153, microRNA (miR)-198, and SUMO-specific peptidase 1 (SENP1) were gauged by quantitative real-time PCR (qRT-PCR) or western blot. Cell proliferation, sphere formation, tube formation, and apoptosis abilities were detected by 5-Ethynyl-2ʹ-Deoxyuridine (EdU), sphere formation, tube formation, and flow cytometry assays, respectively. The direct relationship between miR-198 and circ_0089153 or SENP1 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The mouse xenograft assays were performed to evaluate the role of circ_0089153 in vivo. Our data showed that circ_0089153 was overexpressed in CRC tissues and cells. Depletion of circ_0089153 repressed cell proliferation, sphere formation ability, and enhanced cell apoptosis, as well as inhibited tube formation in vitro. Moreover, circ_0089153 depletion diminished tumor growth in vivo. Mechanistically, circ_0089153 targeted miR-198, and the effects of circ_0089153 were mediated by miR-198. SENP1 was identified as a direct and functional target of miR-198. Circ_0089153 worked as a competing endogenous RNA (ceRNA) to post-transcriptionally regulate SENP1 expression by miR-198. Our findings identify circ_0089153 as a novel regulator of CRC development through the regulation of the miR-198/SENP1 axis and establish a strong rationale for developing circ_0089153 as a promising therapeutic against CRC.
Collapse
Affiliation(s)
- Guan Fang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tingting Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruibo Mao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaming Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling Ji
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Li Y, Sun R, Li R, Chen Y, Du H. Prognostic Nomogram Based on Circular RNA-Associated Competing Endogenous RNA Network for Patients with Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9978206. [PMID: 34497684 PMCID: PMC8421160 DOI: 10.1155/2021/9978206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/14/2021] [Indexed: 11/29/2022]
Abstract
Evidence is increasingly indicating that circular RNAs (circRNAs) are closely involved in tumorigenesis and cancer progression. However, the function and application of circRNAs in lung adenocarcinoma (LUAD) are still unknown. In this study, we constructed a circRNA-associated competitive endogenous RNA (ceRNA) network to investigate the regulatory mechanism of LUAD procession and further constructed a prognostic signature to predict overall survival for LUAD patients. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were selected to construct the ceRNA network. Based on the TargetScan prediction tool and Pearson correlation coefficient, we constructed a circRNA-associated ceRNA network including 11 DEcircRNAs, 8 DEmiRNAs, and 49 DEmRNAs. GO and KEGG enrichment indicated that the ceRNA network might be involved in the regulation of GTPase activity and endothelial cell differentiation. After removing the discrete points, a PPI network containing 12 DEmRNAs was constructed. Univariate Cox regression analysis showed that three DEmRNAs were significantly associated with overall survival. Therefore, we constructed a three-gene prognostic signature for LUAD patients using the LASSO method in the TCGA-LUAD training cohort. By applying the signature, patients could be categorized into the high-risk or low-risk subgroups with significant survival differences (HR: 1.62, 95% CI: 1.12-2.35, log-rank p = 0.009). The prognostic performance was confirmed in an independent GEO cohort (GSE42127, HR: 2.59, 95% CI: 1.32-5.10, log-rank p = 0.004). Multivariate Cox regression analysis proved that the three-gene signature was an independent prognostic factor. Combining the three-gene signature with clinical characters, a nomogram was constructed. The primary and external verification C-indexes were 0.717 and 0.716, respectively. The calibration curves for the probability of 3- and 5-year OS showed significant agreement between nomogram predictions and actual observations. Our findings provided a deeper understanding of the circRNA-associated ceRNA regulatory mechanism in LUAD pathogenesis and further constructed a useful prognostic signature to guide personalized treatment of LUAD patients.
Collapse
Affiliation(s)
- Yang Li
- Department of Central Laboratory, Affiliated Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - Rongrong Sun
- Department of Medical Oncology, Affiliated Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - Rui Li
- Department of Central Laboratory, Affiliated Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - Yonggang Chen
- Department of Clinical Pharmacy, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - He Du
- Department of Medical Oncology, Affiliated Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| |
Collapse
|
46
|
Jafarzadeh M, Soltani BM. MiRNA-Wnt signaling regulatory network in colorectal cancer. J Biochem Mol Toxicol 2021; 35:e22883. [PMID: 34382723 DOI: 10.1002/jbt.22883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023]
Abstract
Colorectal cancer (CRC) is one of the common malignancies worldwide and the Wnt signaling pathway is recognized as the main disrupted pathway in this malignancy. MicroRNAs (miRNAs) are recognized to contribute to the pathogenesis of CRC by triggering or impeding the Wnt signaling pathway. In addition, transcriptional regulation of miRNAs by canonical Wnt signaling also participates in CRC cell progression. In this review, we present comprehensive literature of the existing data on the interaction of miRNAs and Wnt signaling that could be useful in future studies in the field of CRC management.
Collapse
Affiliation(s)
- Meisam Jafarzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
47
|
Wang Q, Lin Y, Zhong W, Jiang Y, Lin Y. Regulatory Non-coding RNAs for Death Associated Protein Kinase Family. Front Mol Biosci 2021; 8:649100. [PMID: 34422899 PMCID: PMC8377501 DOI: 10.3389/fmolb.2021.649100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/26/2021] [Indexed: 01/24/2023] Open
Abstract
The death associated protein kinases (DAPKs) are a family of calcium dependent serine/threonine kinases initially identified in the regulation of apoptosis. Previous studies showed that DAPK family members, including DAPK1, DAPK2 and DAPK3 play a crucial regulatory role in malignant tumor development, in terms of cell apoptosis, proliferation, invasion and metastasis. Accumulating evidence has demonstrated that non-coding RNAs, including microRNA (miRNA), long non-coding RNA (lncRNA) and circRNA, are involved in the regulation of gene expression and tumorigenesis. Recent studies indicated that non-coding RNAs participate in the regulation of DAPKs. In this review, we summarized the current knowledge of non-coding RNAs, as well as the potential miRNAs, lncRNAs and circRNAs, that are involved in the regulation of DAPKs.
Collapse
Affiliation(s)
- Qingshui Wang
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Youyu Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wenting Zhong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yu Jiang
- Prenatal Diagnosis Centre, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
48
|
High-throughput sequencing identified circular RNA circUBE2K mediating RhoA associated bladder cancer phenotype via regulation of miR-516b-5p/ARHGAP5 axis. Cell Death Dis 2021; 12:719. [PMID: 34285193 PMCID: PMC8292476 DOI: 10.1038/s41419-021-03977-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022]
Abstract
Bladder cancer (BC) is known as a common and lethal urinary malignancy worldwide. Circular RNAs (circRNAs), an emerging non-coding RNA, participate in carcinogenesis process of several cancers including BC. In this study, high-throughput sequencing and RT-qPCR were applied to discover and validate abnormal high expression of circUBE2K in BC tissues. Fluorescence in situ hybridization (FISH) was used to detect hsa_circ_0009154 (circUBE2K) expression and subcellular localization in BC tissues. High circUBE2K predicted unfavorable prognoses in BCs, as well as correlated with clinical features. CCK8, transwell, EdU and wound healing assays demonstrated down-regulating circUBE2K decreased BC cell phenotype as proliferation, invasion, and migration, respectively. Further studies showed that circUBE2K promoted BC progression via sponging miR-516b-5p and enhancing ARHGAP5 expression through regulating RhoA activity. Dual-luciferase reporter, FISH and RNA pulldown assays were employed to verify the relationships among circUBE2K/miR-516b-5p/ARHGAP5/RhoA axis. Down-regulating miR-516b-5p or overexpressing ARHGAP5 restored RhoA activity mediated BC cell properties after silencing circUBE2K. Subcutaneous xenograft and metastasis model identified circUBE2K significantly increased BC cell metastasis and proliferation in-vivo. Taken together, we found that circUBE2K is a tumor-promoting circRNA in BC that functions as a ceRNA to regulate ARHGAP5 expression via sponging miR-516b-5p.
Collapse
|
49
|
Radanova M, Mihaylova G, Nazifova-Tasinova N, Levkova M, Tasinov O, Ivanova D, Mihaylova Z, Donev I. Oncogenic Functions and Clinical Significance of Circular RNAs in Colorectal Cancer. Cancers (Basel) 2021; 13:3395. [PMID: 34298612 PMCID: PMC8303601 DOI: 10.3390/cancers13143395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is ranked as the second most commonly diagnosed disease in females and the third in males worldwide. Therefore, the finding of new more reliable biomarkers for early diagnosis, for prediction of metastasis, and resistance to conventional therapies is an important challenge in overcoming the disease. The current review presents circular RNAs (circRNAs) with their unique features as potential prognostic and diagnostic biomarkers in CRC. The review highlights the mechanism of action and the role of circRNAs with oncogenic functions in the CRC as well as the association between their expression and clinicopathological characteristics of CRC patients. The comprehension of the role of oncogenic circRNAs in CRC pathogenesis is growing rapidly and the next step is using them as suitable new drug targets in the personalized treatment of CRC patients.
Collapse
Affiliation(s)
- Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
- Laboratory of Molecular Pathology, University Hospital “St. Marina”, 9000 Varna, Bulgaria
| | - Galya Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Neshe Nazifova-Tasinova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Mariya Levkova
- Department of Medical Genetics, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Oskan Tasinov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Desislava Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Zhasmina Mihaylova
- Clinic of Medical Oncology, Military Medical Academy, 1000 Sofia, Bulgaria;
| | - Ivan Donev
- Clinic of Medical Oncology, Hospital Nadezhda, 1000 Sofia, Bulgaria
| |
Collapse
|
50
|
Luo M, Peng T, Lin R, Gu L, He Y. Hsa_circ_0031787 promotes cell proliferation and invasion in colorectal cancer. J Clin Lab Anal 2021; 35:e23807. [PMID: 34089272 PMCID: PMC8274988 DOI: 10.1002/jcla.23807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/09/2022] Open
Abstract
OBJECTIVE Circular RNA (circRNA) has been found to be involved in regulating tumor development. However, the roles and underlying mechanisms of circRNA in colorectal cancer (CRC) development remain unclear. In this study, we investigated the effects of hsa_circ_0031787 on CRC.a METHODS: Aberrant circRNA expression was explored by the Gene Expression Omnibus (GEO) database, and hsa_circ_0031787 was selected for further study. Hsa_circ_0031787 expression was determined in CRC tissues and cell lines by qRT-PCR. Cell proliferation was measured by Edu and colony formation assays. Cell invasion was tested by Transwell assays. RESULTS Hsa_circ_0031787 expression levels in CRC were significantly increased and correlated with advanced TNM stage and lymph node metastasis in CRC patients. Functional assays showed that hsa_circ_0031787 suppression reduced CRC cell proliferation and invasion in vitro and reduced tumor growth in vivo. Furthermore, hsa_circ_0031787 suppression reduced activation of the Wnt/β-catenin axis in CRC. CONCLUSIONS Our results showed that hsa_circ_0031787 may function as an oncogenic circRNA in CRC progression, thus providing a new potential therapeutic target.
Collapse
Affiliation(s)
- Min Luo
- Hunan University of Chinese MedicineChangshaChina
- Department of ProctologyThe Second Affiliated Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Tianshu Peng
- Department of ProctologyThe Second Affiliated Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Renjing Lin
- Department of ProctologyThe Second Affiliated Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Liyao Gu
- Hunan University of Chinese MedicineChangshaChina
| | - Yongheng He
- Department of ProctologyAffiliated Hospital of Hunan Academy of Traditional Chinese MedicineChangshaChina
| |
Collapse
|