1
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Estrada-Pérez AR, García-Vázquez JB, Mendoza-Figueroa HL, Rosales-Hernández MC, Fernández-Pomares C, Correa-Basurto J. Untargeted LC-MS/MS Metabolomics Study of HO-AAVPA and VPA on Breast Cancer Cell Lines. Int J Mol Sci 2023; 24:14543. [PMID: 37833990 PMCID: PMC10572250 DOI: 10.3390/ijms241914543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) is one of the biggest health problems worldwide, characterized by intricate metabolic and biochemical complexities stemming from pronounced variations across dysregulated molecular pathways. If BC is not diagnosed early, complications may lead to death. Thus, the pursuit of novel therapeutic avenues persists, notably focusing on epigenetic pathways such as histone deacetylases (HDACs). The compound N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA), a derivative of valproic acid (VPA), has emerged as a promising candidate warranting pre-clinical investigation. HO-AAVPA is an HDAC inhibitor with antiproliferative effects on BC, but its molecular mechanism has yet to be deciphered. Furthermore, in the present study, we determined the metabolomic effects of HO-AAVPA and VPA on cells of luminal breast cancer (MCF-7) and triple-negative breast cancer (MDA-MB-231) subtypes. The LC-MS untargeted metabolomic study allowed for the simultaneous measurement of multiple metabolites and pathways, identifying that both compounds affect glycerophospholipid and sphingolipid metabolism in the MCF-7 and MDA-MB-231 cell lines, suggesting that other biological targets were different from HDACs. In addition, there are different dysregulate metabolites, possibly due to the physicochemical differences between HO-AAVPA and VPA.
Collapse
Affiliation(s)
- Alan Rubén Estrada-Pérez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Juan Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Humberto L. Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Cynthia Fernández-Pomares
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
3
|
Zhang Z, Peng J, Li B, Wang Z, Wang H, Wang Y, Hong L. HOXA1 promotes aerobic glycolysis and cancer progression in cervical cancer. Cell Signal 2023; 109:110747. [PMID: 37286120 DOI: 10.1016/j.cellsig.2023.110747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
As a hallmark for cancer, aerobic glycolysis, also known as the Warburg effect contributes to tumor progression. However, the roles of aerobic glycolysis on cervical cancer remain elusive. In this work, we identified transcription factor HOXA1 as a novel regulator of aerobic glycolysis. High expression of HOXA1 is closely associated with poor outcome of patients. And, altered HOXA1 expression enhance or reduce aerobic glycolysis and progression in cervical cancer. Mechanistically, HOXA1 directly regulates the transcriptional activity of ENO1 and PGK1, thus induce glycolysis and promote cancer progression. Moreover, therapeutic knockdown of HOXA1 results in reduce aerobic glycolysis and inhibits cervical cancer progression in vivo and in vitro. In conclusion, these data indicate a therapeutic role of HOXA1 inhibits aerobic glycolysis and cervical cancer progression.
Collapse
Affiliation(s)
- Zihui Zhang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jiaxin Peng
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Bingshu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhi Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Haoyu Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ying Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
4
|
Chen A, Wang M, Xu C, Zhao Y, Xian P, Li Y, Zheng W, Yi X, Wu S, Wang Y. Glycolysis mediates neuron specific histone acetylation in valproic acid-induced human excitatory neuron differentiation. Front Mol Neurosci 2023; 16:1151162. [PMID: 37089691 PMCID: PMC10118002 DOI: 10.3389/fnmol.2023.1151162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Pregnancy exposure of valproic acid (VPA) is widely adopted as a model of environmental factor induced autism spectrum disorder (ASD). Increase of excitatory/inhibitory synaptic transmission ratio has been proposed as the mechanism of VPA induced ASD. How this happened, particularly at the level of excitatory neuron differentiation in human neural progenitor cells (NPCs) remains largely unclear. Here, we report that VPA exposure remarkably inhibited human NPC proliferation and induced excitatory neuronal differentiation without affecting inhibitory neurons. Following VPA treatment, mitochondrial dysfunction was observed before neuronal differentiation, as showed by ultrastructural changes, respiratory complex activity, mitochondrial membrane potential and oxidation levels. Meanwhile, extracellular acidification assay revealed an elevation of glycolysis by VPA stimulation. Interestingly, inhibiting glycolysis by 2-deoxy-d-glucose-6-phosphate (2-DG) efficiently blocked the excitatory neuronal differentiation of human NPCs induced by VPA. Furthermore, 2-DG treatment significantly compromised the VPA-induced expression of H3ac and H3K9ac, and the VPA-induced binding of H3K9ac on the promoter of Ngn2 and Mash1, two key transcription factors of excitatory neuron fate determination. These data, for the first time, demonstrated that VPA biased excitatory neuron differentiation by glycolysis-mediated histone acetylation of neuron specific transcription factors.
Collapse
Affiliation(s)
- Andi Chen
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Mengmeng Wang
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chao Xu
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Youyi Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Panpan Xian
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuqian Li
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Weian Zheng
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
- School of Life Sciences and Research Center for Natural Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an, China
| | - Xuyang Yi
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
- Shengxi Wu,
| | - Yazhou Wang
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Yazhou Wang,
| |
Collapse
|
5
|
Natale G, Fini E, Calabrò PF, Carli M, Scarselli M, Bocci G. Valproate and lithium: Old drugs for new pharmacological approaches in brain tumors? Cancer Lett 2023; 560:216125. [PMID: 36914086 DOI: 10.1016/j.canlet.2023.216125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Beyond its use as an antiepileptic drug, over time valproate has been increasingly used for several other therapeutic applications. Among these, the antineoplastic effects of valproate have been assessed in several in vitro and in vivo preclinical studies, suggesting that this agent significantly inhibits cancer cell proliferation by modulating multiple signaling pathways. During the last years various clinical trials have tried to find out if valproate co-administration could enhance the antineoplastic activity of chemotherapy in glioblastoma patients and in patients suffering from brain metastases, demonstrating that the inclusion of valproate in the therapeutic schedule causes an improved median overall survival in some studies, but not in others. Thus, the effects of the use of concomitant valproate in brain cancer patients are still controversial. Similarly, lithium has been tested as an anticancer drug in several preclinical studies mainly using the unregistered formulation of lithium chloride salts. Although, there are no data showing that the anticancer effects of lithium chloride are superimposable to the registered lithium carbonate, this formulation has shown preclinical activity in glioblastoma and hepatocellular cancers. However, few but interesting clinical trials have been performed with lithium carbonate on a very small number of cancer patients. Based on published data, valproate could represent a potential complementary therapeutic approach to enhance the anticancer activity of brain cancer standard chemotherapy. Same advantageous characteristics are less convincing for lithium carbonate. Therefore, the planning of specific phase III studies is necessary to validate the repositioning of these drugs in present and future oncological research.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy; Museum of Human Anatomy "Filippo Civinini", University of Pisa, Italy
| | - Elisabetta Fini
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|
6
|
Rocha MA, de Campos Vidal B, Mello MLS. Sodium Valproate Modulates the Methylation Status of Lysine Residues 4, 9 and 27 in Histone H3 of HeLa Cells. Curr Mol Pharmacol 2023; 16:197-210. [PMID: 35297358 DOI: 10.2174/1874467215666220316110405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Valproic acid/sodium valproate (VPA), a well-known anti-epileptic agent, inhibits histone deacetylases, induces histone hyperacetylation, promotes DNA demethylation, and affects the histone methylation status in some cell models. Histone methylation profiles have been described as potential markers for cervical cancer prognosis. However, histone methylation markers that can be studied in a cervical cancer cell line, like HeLa cells, have not been investigated following treatment with VPA. METHODS In this study, the effect of 0.5 mM and 2.0 mM VPA for 24 h on H3K4me2/me3, H3K9me/me2 and H3K27me/me3 signals as well as on KMT2D, EZH2, and KDM3A gene expression was investigated using confocal microscopy, Western blotting, and RT-PCR. Histone methylation changes were also investigated by Fourier-transform infrared spectroscopy (FTIR). RESULTS We found that VPA induces increased levels of H3K4me2/me3 and H3K9me, which are indicative of chromatin activation. Particularly, H3K4me2 markers appeared intensified close to the nuclear periphery, which may suggest their implication in increased transcriptional memory. The abundance of H3K4me2/me3 in the presence of VPA was associated with increased methyltransferase KMT2D gene expression. VPA induced hypomethylation of H3K9me2, which is associated with gene silencing, and concomitant with the demethylase KDM3A, it increased gene expression. Although VPA induces increased H3K27me/me3 levels, it is suggested that the role of the methyltransferase EZH2 in this context could be affected by interactions with this drug. CONCLUSION Histone FTIR spectra were not affected by VPA under present experimental conditions. Whether our epigenetic results are consistent with VPA affecting the aggressive tumorous state of HeLa cells, further investigation is required.
Collapse
Affiliation(s)
- Marina Amorim Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Benedicto de Campos Vidal
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Maria Luiza Silveira Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
7
|
Apigenin Suppresses the Warburg Effect and Stem-like Properties in SOSP-9607 Cells by Inactivating the PI3K/Akt/mTOR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3983637. [PMID: 35310040 PMCID: PMC8926538 DOI: 10.1155/2022/3983637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/09/2021] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
Abstract
Osteosarcoma (OS) is a prevalent primary malignant bone tumor that commonly occurs in children and adolescents. Apigenin (4′,5,7-trihydroxyflavone) is one of the most researched phenolic compounds that exhibits antitumor effects in several cancers. The aim of the current study was to investigate the effect and underlying mechanisms of apigenin on OS. To address this, OS cells (SOSP-9607) were treated with different concentrations of apigenin. The proliferation, migration, invasion, stem-like properties, and Warburg effect of apigenin-treated OS cells were evaluated. Apigenin was found to suppress the proliferation of SOSP-9607 cells and inhibit epithelial-mesenchymal transition, as indicated by decreased number of migrated and invaded cells, decreased protein expression of vimentin, and increased protein expression of E-cadherin. Additionally, apigenin suppressed tumorsphere formation and reduced the proportion of SOSP-9607 cells with positive expression of the stem cell-related markers Nanog and OCT-4. Apigenin inhibited the Warburg effect in SOSP-9607 cells, as demonstrated by decreased glucose and lactic acid levels, increased citrate and ATP levels, and downregulation of GLUT1, HK1, and LDHA, which are metabolism-related enzymes related to the Warburg effect. Moreover, apigenin inhibited the phosphorylation of PI3K, Akt, and mTOR in SOSP-9607 cells. Collectively, these results indicate that apigenin suppresses the Warburg effect and stem-like properties in SOSP-9607 cells, which may be mediated by PI3K/Akt/mTOR signaling, thus, providing a novel strategy for OS treatment.
Collapse
|
8
|
Liu H, Wang X, Shen P, Ni Y, Han X. The basic functions of phosphoglycerate kinase 1 and its roles in cancer and other diseases. Eur J Pharmacol 2022; 920:174835. [DOI: 10.1016/j.ejphar.2022.174835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 01/17/2023]
|
9
|
Juknevičienė M, Balnytė I, Valančiūtė A, Stanevičiūtė J, Sužiedėlis K, Stakišaitis D. The effect of valproic acid on SLC5A8 expression in gonad-intact and gonadectomized rat thymocytes. Int J Immunopathol Pharmacol 2022; 36:20587384211051954. [PMID: 35120418 PMCID: PMC8819739 DOI: 10.1177/20587384211051954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Valproic acid (VPA) pharmacological mechanisms are related to the anti-inflammatory and anti-viral effects. VPA is a histone deacetylases inhibitor and serves a role in its immunomodulatory impacts. VPA has complex effects on immune cell's mitochondrial metabolism. The SLC5A8 transporter of short fatty acids has an active role in regulating mitochondrial metabolism. The study aimed to investigate whether SLC5A8 expresses the sex-related difference and how SLC5A8 expression depends on gonadal hormones, VPA treatment, and NKCC1 expression in rat thymocytes. METHODS Control groups and VPA-treated gonad-intact and gonadectomized Wistar male and female rats were investigated (n = 6 in a group). The VPA 300 mg/kg/day in drinking water was given for 4 weeks. The SLC5A8 (Slc5a8 gene) and NKCC1 (Slc12a2 gene) RNA expressions were determined by the RT-PCR method. RESULTS The higher Slc5a8 expression was found in the gonad-intact males than respective females (p = 0.004). VPA treatment decreased the Slc5a8 expression in gonad-intact and castrated males (p = 0.02 and p = 0.03, respectively), and increased in gonad-intact female rats compared to their control (p = 0.03). No significant difference in the Slc5a8 expression between the ovariectomized female control and VPA-treated females was determined (p > 0.05). VPA treatment alters the correlation between Slc5a8 and Slc12a2 gene expression in thymocytes of gonad-intact rats. CONCLUSION VPA effect on the Slc5a8 expression in rat thymocytes is gender- and gonadal hormone-dependent.
Collapse
Affiliation(s)
- Milda Juknevičienė
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
| | - Jūratė Stanevičiūtė
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer
Institute, Vilnius, Lithuania
| | - Donatas Stakišaitis
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
- Laboratory of Molecular Oncology, National Cancer
Institute, Vilnius, Lithuania
| |
Collapse
|
10
|
Das D, Karthik N, Taneja R. Epigenetic Small-Molecule Modulators Targeting Metabolic Pathways in Cancer. Subcell Biochem 2022; 100:523-555. [PMID: 36301505 DOI: 10.1007/978-3-031-07634-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic deregulation is a key factor in cancer progression. Epigenetic changes and metabolic rewiring are intertwined in cancer. Deregulated epigenetic modifiers cause metabolic aberrations by targeting the expression of metabolic enzymes. Conversely, metabolites and cofactors affect the expression and activity of epigenetic regulators. Small molecules are promising therapeutic approaches to target the epigenetic-metabolomic crosstalk in cancer. Here, we focus on the interplay between metabolic rewiring and epigenetic landscape in the context of tumourigenesis and highlight recent advances in the use of small-molecule drug targets for therapy.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology and Healthy Longevity Translational Research Program Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nandini Karthik
- Department of Physiology and Healthy Longevity Translational Research Program Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology and Healthy Longevity Translational Research Program Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Ciaccio R, De Rosa P, Aloisi S, Viggiano M, Cimadom L, Zadran SK, Perini G, Milazzo G. Targeting Oncogenic Transcriptional Networks in Neuroblastoma: From N-Myc to Epigenetic Drugs. Int J Mol Sci 2021; 22:12883. [PMID: 34884690 PMCID: PMC8657550 DOI: 10.3390/ijms222312883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma (NB) is one of the most frequently occurring neurogenic extracranial solid cancers in childhood and infancy. Over the years, many pieces of evidence suggested that NB development is controlled by gene expression dysregulation. These unleashed programs that outline NB cancer cells make them highly dependent on specific tuning of gene expression, which can act co-operatively to define the differentiation state, cell identity, and specialized functions. The peculiar regulation is mainly caused by genetic and epigenetic alterations, resulting in the dependency on a small set of key master transcriptional regulators as the convergence point of multiple signalling pathways. In this review, we provide a comprehensive blueprint of transcriptional regulation bearing NB initiation and progression, unveiling the complexity of novel oncogenic and tumour suppressive regulatory networks of this pathology. Furthermore, we underline the significance of multi-target therapies against these hallmarks, showing how novel approaches, together with chemotherapy, surgery, or radiotherapy, can have substantial antineoplastic effects, disrupting a wide variety of tumorigenic pathways through combinations of different treatments.
Collapse
|
12
|
Zhang S, Hua Z, Ba G, Xu N, Miao J, Zhao G, Gong W, Liu Z, Thiele CJ, Li Z. Antitumor effects of the small molecule DMAMCL in neuroblastoma via suppressing aerobic glycolysis and targeting PFKL. Cancer Cell Int 2021; 21:619. [PMID: 34819091 PMCID: PMC8613996 DOI: 10.1186/s12935-021-02330-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Background Neuroblastoma (NB) is a common solid malignancy in children that is associated with a poor prognosis. Although the novel small molecular compound Dimethylaminomicheliolide (DMAMCL) has been shown to induce cell death in some tumors, little is known about its role in NB. Methods We examined the effect of DMAMCL on four NB cell lines (NPG, AS, KCNR, BE2). Cellular confluence, survival, apoptosis, and glycolysis were detected using Incucyte ZOOM, CCK-8 assays, Annexin V-PE/7-AAD flow cytometry, and Seahorse XFe96, respectively. Synergistic effects between agents were evaluated using CompuSyn and the effect of DMAMCL in vivo was evaluated using a xenograft mouse model. Phosphofructokinase-1, liver type (PFKL) expression was up- and down-regulated using overexpression plasmids or siRNA. Results When administered as a single agent, DMAMCL decreased cell proliferation in a time- and dose-dependent manner, increased the percentage of cells in SubG1 phase, and induced apoptosis in vitro, as well as inhibiting tumor growth and prolonging survival in tumor-bearing mice (NGP, BE2) in vivo. In addition, DMAMCL exerted synergistic effects when combined with etoposide or cisplatin in vitro and displayed increased antitumor effects when combined with etoposide in vivo compared to either agent alone. Mechanistically, DMAMCL suppressed aerobic glycolysis by decreasing glucose consumption, lactate excretion, and ATP production, as well as reducing the expression of PFKL, a key glycolysis enzyme, in vitro and in vivo. Furthermore, PFKL overexpression attenuated DMAMCL-induced cell death, whereas PFKL silencing promoted NB cell death. Conclusions The results of this study suggest that DMAMCL exerts antitumor effects on NB both in vitro and in vivo by suppressing aerobic glycolysis and that PFKL could be a potential target of DMAMCL in NB. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02330-y.
Collapse
Affiliation(s)
- Simeng Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Gen Ba
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Ning Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Jianing Miao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Guifeng Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Wei Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhihui Liu
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Carol J Thiele
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China. .,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
13
|
Pezeshki PS, Moeinafshar A, Ghaemdoust F, Razi S, Keshavarz-Fathi M, Rezaei N. Advances in pharmacotherapy for neuroblastoma. Expert Opin Pharmacother 2021; 22:2383-2404. [PMID: 34254549 DOI: 10.1080/14656566.2021.1953470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neuroblastoma is the most prevalent cancer type diagnosed within the first year after birth and accounts for 15% of deaths from pediatric cancer. Despite the improvements in survival rates of patients with neuroblastoma, the incidence of the disease has increased over the last decade. Neuroblastoma tumor cells harbor a vast range of variable and heterogeneous histochemical and genetic alterations which calls for the need to administer individualized and targeted therapies to induce tumor regression in each patient. AREAS COVERED This paper provides reviews the recent clinical trials which used chemotherapeutic and/or targeted agents as either monotherapies or in combination to improve the response rate in patients with neuroblastoma, and especially high-risk neuroblastoma. It also reviews some of the prominent preclinical studies which can provide the rationale for future clinical trials. EXPERT OPINION Although some distinguished advances in pharmacotherapy have been made to improve the survival rate and reduce adverse events in patients with neuroblastoma, a more comprehensive understanding of the mechanisms of tumorigenesis, resistance to therapies or relapse, identifying biomarkers of response to each specific drug, and developing predictive preclinical models of the tumor can lead to further breakthroughs in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Parmida Sadat Pezeshki
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghaemdoust
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
14
|
Bahmad HF, Elajami MK, El Zarif T, Bou-Gharios J, Abou-Antoun T, Abou-Kheir W. Drug repurposing towards targeting cancer stem cells in pediatric brain tumors. Cancer Metastasis Rev 2020; 39:127-148. [PMID: 31919619 DOI: 10.1007/s10555-019-09840-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the pediatric population, brain tumors represent the most commonly diagnosed solid neoplasms and the leading cause of cancer-related deaths globally. They include low-grade gliomas (LGGs), medulloblastomas (MBs), and other embryonal, ependymal, and neuroectodermal tumors. The mainstay of treatment for most brain tumors includes surgical intervention, radiation therapy, and chemotherapy. However, resistance to conventional therapy is widespread, which contributes to the high mortality rates reported and lack of improvement in patient survival despite advancement in therapeutic research. This has been attributed to the presence of a subpopulation of cells, known as cancer stem cells (CSCs), which reside within the tumor bulk and maintain self-renewal and recurrence potential of the tumor. An emerging promising approach that enables identifying novel therapeutic strategies to target CSCs and overcome therapy resistance is drug repurposing or repositioning. This is based on using previously approved drugs with known pharmacokinetic and pharmacodynamic characteristics for indications other than their traditional ones, like cancer. In this review, we provide a synopsis of the drug repurposing methodologies that have been used in pediatric brain tumors, and we argue how this selective compilation of approaches, with a focus on CSC targeting, could elevate drug repurposing to the next level.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Mohamad K Elajami
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Talal El Zarif
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Jolie Bou-Gharios
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Tamara Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos Campus, CHSC 6101, Byblos, Lebanon.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon.
| |
Collapse
|