1
|
Morado-Urbina CE, Kato J, Sandor K, Vazquez-Mora JA, Ängeby Möller K, Simon N, Salcido J, Martinez-Martinez A, Munoz-Islas E, Jimenez-Andrade JM, Svensson CI. Sex-dependent effects of the targeted nerve growth factor mutation (R100E) on pain behavior, joint inflammation, and bone erosion in mice. Pain 2024; 165:2814-2828. [PMID: 39324959 PMCID: PMC11562760 DOI: 10.1097/j.pain.0000000000003343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 09/27/2024]
Abstract
ABSTRACT Nerve growth factor (NGF)-R100E is a mutated form of human recombinant NGF that reduces the binding of NGF to its p75NTR receptor while retaining its affinity toward the TrkA receptor. Here, we used human wild type NGF and NGF-R100E knock-in mice to investigate the effects of this NGF mutation on inflammation-induced pain-related behaviors and bone loss. The hNGF-R100E mutation did not alter the nerve fiber density in the sciatic nerve, ankle joint synovium, and skin of naïve mice. Withdrawal responses to mechanical, thermal, and cold stimuli before and after joint inflammation induced by intra-articular injection of complete Freund adjuvant (CFA) were similar between human recombinant nerve growth factor-wild type and hNGF-R100E male and female mice while weight bearing and gait analysis revealed significant differences. Intriguingly, hNGF-R100E male and female mice showed only mild changes, indicating lower degrees of deep joint-related pain compared to their wild type counterparts. Furthermore, micro-CT analysis demonstrated that hNGF-R100E female mice, but not males, were protected from CFA-induced bone loss, and mRNA analysis showed a different gene regulation indicating a sex-dependent relationship between NGF, inflammation, and bone loss. In conclusion, our study reveals that the hNGF-R100E mutation renders mice insensitive to inflammation-induced impact on joint loading and gait while preserving the development of the peripheral nociceptive neurons and sensitivity to punctate stimulation of the skin. Notably, the mutation uncovers a sex-dependent relationship between NGF and inflammation-induced bone loss. These findings offer valuable insights into NGF as a target for pain management and the interplay between NGF and bone architecture.
Collapse
Affiliation(s)
- Carlos E. Morado-Urbina
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Jungo Kato
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Juan Antonio Vazquez-Mora
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Kristina Ängeby Möller
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Jaira Salcido
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | - Arisai Martinez-Martinez
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | - Enriqueta Munoz-Islas
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | | | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
2
|
Pacifico P, Testa G, Amodeo R, Mainardi M, Tiberi A, Convertino D, Arevalo JC, Marchetti L, Costa M, Cattaneo A, Capsoni S. Human TrkAR649W mutation impairs nociception, sweating and cognitive abilities: a mouse model of HSAN IV. Hum Mol Genet 2023; 32:1380-1400. [PMID: 36537577 PMCID: PMC10077510 DOI: 10.1093/hmg/ddac295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
A functional nerve growth factor NGF-Tropomyosin Receptor kinase A (TrkA) system is an essential requisite for the generation and maintenance of long-lasting thermal and mechanical hyperalgesia in adult mammals. Indeed, mutations in the gene encoding for TrkA are responsible for a rare condition, named Hereditary Sensory and Autonomic Neuropathy type IV (HSAN IV), characterized by the loss of response to noxious stimuli, anhidrosis and cognitive impairment. However, to date, there is no available mouse model to properly understand how the NGF-TrkA system can lead to pathological phenotypes that are distinctive of HSAN IV. Here, we report the generation of a knock-in mouse line carrying the HSAN IV TrkAR649W mutation. First, by in vitro biochemical and biophysical analyses, we show that the pathological R649W mutation leads to kinase-inactive TrkA also affecting its membrane dynamics and trafficking. In agreement with the HSAN IV human phenotype, TrkAR649W/m mice display a lower response to thermal and chemical noxious stimuli, correlating with reduced skin innervation, in addition to decreased sweating in comparison to TrkAh/m controls. Moreover, the R649W mutation decreases anxiety-like behavior and compromises cognitive abilities, by impairing spatial-working and social memory. Our results further uncover unexplored roles of TrkA in thermoregulation and sociability. In addition to accurately recapitulating the clinical manifestations of HSAN IV patients, our findings contribute to clarifying the involvement of the NGF-TrkA system in pain sensation.
Collapse
Affiliation(s)
- Paola Pacifico
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
| | - Giovanna Testa
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
| | - Rosy Amodeo
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa 56127, Italy
- NEST, Scuola Normale Superiore, Pisa 56127, Italy
| | - Marco Mainardi
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
- Neuroscience Institute, National Research Council (IN-CNR), Pisa 56124, Italy
| | - Alexia Tiberi
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
| | - Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa 56127, Italy
- NEST, Scuola Normale Superiore, Pisa 56127, Italy
| | - Juan Carlos Arevalo
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
- Institute of Biomedical Research of Salamanca, Salamanca 37007, Spain
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa 56127, Italy
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Mario Costa
- Neuroscience Institute, National Research Council (IN-CNR), Pisa 56124, Italy
- Pisa Center for Research and Clinical Implementation Flash Radiotherapy (CPFR@CISUP), Pisa 56126, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Rome 00161, Italy
| | - Simona Capsoni
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
- Department of Neuroscience and Rehabilitation, Institute of Physiology, University of Ferrara, Ferrara 44121, Italy
| |
Collapse
|
3
|
Testa G, Mainardi M, Vannini E, Pancrazi L, Cattaneo A, Costa M. Disentangling the signaling complexity of nerve growth factor receptors by
CRISPR
/Cas9. FASEB J 2022; 36:e22498. [PMID: 37036720 DOI: 10.1096/fj.202101760rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
The binding of nerve growth factor (NGF) to the tropomyosin-related kinase A (TrkA) and p75NTR receptors activates a large variety of pathways regulating critical processes as diverse as proliferation, differentiation, membrane potential, synaptic plasticity, and pain. To ascertain the details of TrkA-p75NTR interaction and cooperation, a plethora of experiments, mostly based on receptor overexpression or downregulation, have been performed. Among the heterogeneous cellular systems used for studying NGF signaling, the PC12 pheochromocytoma-derived cell line is a widely used model. By means of CRISPR/Cas9 genome editing, we created PC12 cells lacking TrkA, p75NTR , or both. We found that TrkA-null cells become unresponsive to NGF. Conversely, the absence of p75NTR enhances the phosphorylation of TrkA and its effectors. Using a patch-clamp, we demonstrated that the individual activation of TrkA and p75NTR by NGF results in antagonizing effects on the membrane potential. These newly developed PC12 cell lines can be used to investigate the specific roles of TrkA and p75NTR in a genetically defined cellular model, thus providing a useful platform for future studies and further gene editing.
Collapse
Affiliation(s)
- Giovanna Testa
- Laboratory of Biology “Bio@SNS” Scuola Normale Superiore Pisa Italy
| | - Marco Mainardi
- Laboratory of Biology “Bio@SNS” Scuola Normale Superiore Pisa Italy
- Neuroscience Institute National Research Council (CNR) Pisa Italy
| | - Eleonora Vannini
- Neuroscience Institute National Research Council (CNR) Pisa Italy
| | - Laura Pancrazi
- Neuroscience Institute National Research Council (CNR) Pisa Italy
| | - Antonino Cattaneo
- Laboratory of Biology “Bio@SNS” Scuola Normale Superiore Pisa Italy
- European Brain Research Institute “Rita Levi Montalcini” (EBRI) Rome Italy
| | - Mario Costa
- Laboratory of Biology “Bio@SNS” Scuola Normale Superiore Pisa Italy
- Neuroscience Institute National Research Council (CNR) Pisa Italy
- Centro Pisano ricerca e implementazione clinica Flash Radiotherapy “CPFR@CISUP”, “S. Chiara” Hospital Pisa Italy
| |
Collapse
|
4
|
Testa G, Cattaneo A, Capsoni S. Understanding pain perception through genetic painlessness diseases: The role of NGF and proNGF. Pharmacol Res 2021; 169:105662. [PMID: 34000361 DOI: 10.1016/j.phrs.2021.105662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 01/25/2023]
Abstract
Nerve growth factor (NGF), by binding to TrkA and p75NTR receptors, regulates the survival and differentiation of sensory neurons during development and mediates pain transmission and perception during adulthood, by acting at different levels of the nervous system. Key to understanding the role of NGF as a pain mediator is the finding that mutations (namely, R121W, V232fs and R221W) in the NGF gene cause painlessness disease Hereditary Sensory and Autonomic Neuropathy type V (HSAN V). Here we shall review the consequences of these NGF mutations, each of which results in specific clinical signs: R221W determines congenital pain insensitivity with no overt cognitive disabilities, whereas V232fs and R121W also result in intellectual disability, thus showing similarities to HSAN IV, which is caused by mutations in TrkA, rather than to HSAN V. Comparing the cellular, biochemical and clinical findings of these mutations could help in better understanding not only the possible mechanisms underlying HSAN V, but also mechanisms of NGF signalling and roles. These mutations alter the balance between NGF and proNGF in favour of an accumulation of the latter, suggesting a possible role of proNGF as a molecule with an analgesic role. Furthermore, the neurotrophic and pronociceptive functions of NGF are split by the R221W mutation, making NGF variants based on this mutation interesting for designing therapeutic applications for many diseases. This review emphasizes the possibility of using the mutations involved in "painlessness" clinical disorders as an innovative approach to identify new proteins and pathways involved in pain transmission and perception. OUTSTANDING QUESTIONS: Why do homozygous HSAN V die postnatally? What is the cause of this early postnatal lethality? Is the development of a mouse or a human feeling less pain affecting higher cognitive and perceptual functions? What is the consequence of the HSAN V mutation on the development of joints and bones? Are the multiple fractures observed in HSAN V patients due exclusively to the carelessness consequent to not feeling pain, or also to an intrinsic frailty of their bones? Are heterodimers of NGFWT and NGFR221W in the heterozygote state formed? And if so, what are the properties of these heterodimeric proteins? How is the processing of proNGFR221W to NGFR221W affected by the mutation?
Collapse
Affiliation(s)
- Giovanna Testa
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy.
| | - Simona Capsoni
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
5
|
Yang W, Sung K, Xu W, Rodriguez MJ, Wu AC, Santos SA, Fang S, Uber RK, Dong SX, Guillory BC, Orain X, Raus J, Jolivalt C, Calcutt N, Rissman RA, Ding J, Wu C. A missense point mutation in nerve growth factor (NGF R100W) results in selective peripheral sensory neuropathy. Prog Neurobiol 2020; 194:101886. [PMID: 32693191 DOI: 10.1016/j.pneurobio.2020.101886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/09/2020] [Accepted: 07/11/2020] [Indexed: 01/15/2023]
Abstract
The R100W mutation in nerve growth factor is associated with hereditary sensory autonomic neuropathy V in a Swedish family. These patients develop severe loss of perception to deep pain but with apparently normal cognitive functions. To better understand the disease mechanism, we examined a knockin mouse model of HSAN V. The homozygous mice showed significant structural deficits in intra-epidermal nerve fibers (IENFs) at birth. These mice had a total loss of pain perception at ∼2 months of age and often failed to survive to adulthood. Heterozygous mutant mice developed a progressive degeneration of small sensory fibers both behaviorally and functionally: they showed a progressive loss of IENFs starting at the age of 9 months accompanied with progressive loss of perception to painful stimuli such as noxious temperature. Quantitative analysis of lumbar 4/5 dorsal root ganglia revealed a significant reduction in small size neurons, while analysis of sciatic nerve fibers revealed the heterozygous mutant mice had no reduction in myelinated nerve fibers. Significantly, the amount of NGF secreted from mouse embryonic fibroblasts were reduced from both heterozygous and homozygous mice compared to their wild-type littermates. Interestingly, the heterozygous mice showed no apparent structural alteration in the brain: neither the anterior cingulate cortex nor the medial septum including NGF-dependent basal forebrain cholinergic neurons. Accordingly, these animals did not develop appreciable deficits in tests for brain function. Our study has thus demonstrated that the NGFR100W mutation likely affects the structure and function of peripheral sensory neurons.
Collapse
Affiliation(s)
- Wanlin Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Department of Neurology, Zhuijiang Hospital, Southern Medical University, Guangzhou, China
| | - Kijung Sung
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Wei Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maria J Rodriguez
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Andrew C Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Sarai A Santos
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Savannah Fang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Rebecca K Uber
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Stephanie X Dong
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Brandon C Guillory
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Xavier Orain
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jordan Raus
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Corrine Jolivalt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Nigel Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
The NGF R100W Mutation Specifically Impairs Nociception without Affecting Cognitive Performance in a Mouse Model of Hereditary Sensory and Autonomic Neuropathy Type V. J Neurosci 2019; 39:9702-9715. [PMID: 31685654 DOI: 10.1523/jneurosci.0688-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/01/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022] Open
Abstract
Nerve growth factor (NGF) is a key mediator of nociception, acting during the development and differentiation of dorsal root ganglion (DRG) neurons, and on adult DRG neuron sensitization to painful stimuli. NGF also has central actions in the brain, where it regulates the phenotypic maintenance of cholinergic neurons. The physiological function of NGF as a pain mediator is altered in patients with Hereditary Sensory and Autonomic Neuropathy type V (HSAN V), caused by the 661C>T transition in the Ngf gene, resulting in the R100W missense mutation in mature NGF. Homozygous HSAN V patients present with congenital pain insensitivity, but are cognitively normal. This led us to hypothesize that the R100W mutation may differentially affect the central and peripheral actions of NGF. To test this hypothesis and provide a mechanistic basis to the HSAN V phenotype, we generated transgenic mice harboring the human 661C>T mutation in the Ngf gene and studied both males and females. We demonstrate that heterozygous NGFR100W/wt mice display impaired nociception. DRG neurons of NGFR100W/wt mice are morphologically normal, with no alteration in the different DRG subpopulations, whereas skin innervation is reduced. The NGFR100W protein has reduced capability to activate pain-specific signaling, paralleling its reduced ability to induce mechanical allodynia. Surprisingly, however, NGFR100W/wt mice, unlike heterozygous mNGF+/- mice, show no learning or memory deficits, despite a reduction in secretion and brain levels of NGF. The results exclude haploinsufficiency of NGF as a mechanistic cause for heterozygous HSAN V mice and demonstrate a specific effect of the R100W mutation on nociception.SIGNIFICANCE STATEMENT The R100W mutation in nerve growth factor (NGF) causes Hereditary Sensory and Autonomic Neuropathy type V, a rare disease characterized by impaired nociception, even in apparently clinically silent heterozygotes. For the first time, we generated and characterized heterozygous knock-in mice carrying the human R100W-mutated allele (NGFR100W/wt). Mutant mice have normal nociceptor populations, which, however, display decreased activation of pain transduction pathways. NGFR100W interferes with peripheral and central NGF bioavailability, but this does not impact on CNS function, as demonstrated by normal learning and memory, in contrast with heterozygous NGF knock-out mice. Thus, a point mutation allows neurotrophic and pronociceptive functions of NGF to be split, with interesting implications for the treatment of chronic pain.
Collapse
|