1
|
Bensaude O, Barbosa I, Morillo L, Dikstein R, Le Hir H. Exon-junction complex association with stalled ribosomes and slow translation-independent disassembly. Nat Commun 2024; 15:4209. [PMID: 38760352 PMCID: PMC11101648 DOI: 10.1038/s41467-024-48371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Exon junction complexes are deposited at exon-exon junctions during splicing. They are primarily known to activate non-sense mediated degradation of transcripts harbouring premature stop codons before the last intron. According to a popular model, exon-junction complexes accompany mRNAs to the cytoplasm where the first translating ribosome pushes them out. However, they are also removed by uncharacterized, translation-independent mechanisms. Little is known about kinetic and transcript specificity of these processes. Here we tag core subunits of exon-junction complexes with complementary split nanoluciferase fragments to obtain sensitive and quantitative assays for complex formation. Unexpectedly, exon-junction complexes form large stable mRNPs containing stalled ribosomes. Complex assembly and disassembly rates are determined after an arrest in transcription and/or translation. 85% of newly deposited exon-junction complexes are disassembled by a translation-dependent mechanism. However as this process is much faster than the translation-independent one, only 30% of the exon-junction complexes present in cells at steady state require translation for disassembly. Deep RNA sequencing shows a bias of exon-junction complex bound transcripts towards microtubule and centrosome coding ones and demonstrate that the lifetimes of exon-junction complexes are transcript-specific. This study provides a dynamic vision of exon-junction complexes and uncovers their unexpected stable association with ribosomes.
Collapse
Affiliation(s)
- Olivier Bensaude
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| | - Isabelle Barbosa
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Lucia Morillo
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
2
|
Yu S, Chen C, Chen M, Liang J, Jiang K, Lou B, Lu J, Zhu X, Zhou D. MAGOH promotes gastric cancer progression via hnRNPA1 expression inhibition-mediated RONΔ160/PI3K/AKT signaling pathway activation. J Exp Clin Cancer Res 2024; 43:32. [PMID: 38268030 PMCID: PMC10809607 DOI: 10.1186/s13046-024-02946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is associated with high mortality and heterogeneity and poses a great threat to humans. Gene therapies for the receptor tyrosine kinase RON and its spliceosomes are attracting increasing amounts of attention due to their unique characteristics. However, little is known about the mechanism involved in the formation of the RON mRNA alternative spliceosome RONΔ160. METHODS Fourteen human GC tissue samples and six normal gastric tissue samples were subjected to label-free relative quantitative proteomics analysis, and MAGOH was identified as a candidate protein for subsequent studies. The expression of MAGOH in clinical specimens was verified by quantitative real-time PCR and western blotting. We then determined the biological function of MAGOH in GC through in vitro and in vivo experiments. RNA pulldown, RNA sequencing and RNA immunoprecipitation (RIP) were subsequently conducted to uncover the underlying mechanism by which MAGOH regulated the formation of RONΔ160. RESULTS Proteomic analysis revealed that MAGOH, which is located at key nodes and participates in RNA processing and mRNA splicing, was upregulated in GC tissue and GC cell lines and was associated with poor prognosis. Functional analysis showed that MAGOH promoted the proliferation, migration and invasion of GC cells in vitro and in vivo. Mechanistically, MAGOH inhibited the expression of hnRNPA1 and reduced the binding of hnRNPA1 to RON mRNA, thereby promoting the formation of RONΔ160 to activate the PI3K/AKT signaling pathway and consequently facilitating GC progression. CONCLUSIONS Our study revealed that MAGOH could promote the formation of RONΔ160 and activate the PI3K/AKT signaling pathway through the inhibition of hnRNPA1 expression. We elucidate a novel mechanism and potential therapeutic targets for the growth and metastasis of GC based on the MAGOH-RONΔ160 axis, and these findings have important guiding significance and clinical value for the future development of effective therapeutic strategies for GC.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxiao Liang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kecheng Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Lou
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohua Zhu
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Zhou Y, Li Z, Wu X, Tou L, Zheng J, Zhou D. MAGOH/MAGOHB Inhibits the Tumorigenesis of Gastric Cancer via Inactivation of b-RAF/MEK/ERK Signaling. Onco Targets Ther 2020; 13:12723-12735. [PMID: 33328743 PMCID: PMC7735944 DOI: 10.2147/ott.s263913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background Gastric cancer is one of the most malignant tumors all over the world. It has been reported that proteins play key roles during the tumorigenesis of gastric cancer. To identify novel potential targets for gastric cancer, differential expressed proteins between gastric cancer and adjacent normal tissues were analyzed with proteomics and bioinformatics tool. Methods The differentially expressed proteins between gastric cancer and adjacent normal tissues were analyzed by Omicsbean (multi-omics data analysis tool). Cell viability was tested by CCK-8 assay. Flow cytometry was used to measure cell apoptosis and cycle. Transwell assay was used to test cell migration and invasion. Gene and protein expressions were detected by RT-qPCR, immunohistochemistry and Western blot, respectively. Results MAGOH and MAGOHB were found to be notably upregulated in gastric cancer tissues compared with that in normal tissues. Knockdown of MAGOH significantly inhibited the proliferation of gastric cancer cells via inducing the cell apoptosis. In addition, MAGOH knockdown induced G2 phase arrest in gastric cancer cells. Moreover, MAGOH knockdown notably inhibited migration and invasion of gastric cancer cells. Importantly, double knockdown of MAGOH and MAGOHB exhibited much better anti-tumor effects on gastric cancer compared with alone treatment. Finally, double knockdown of MAGOH and MAGOHB mediated the tumorigenesis of gastric cancer via regulation of RAF/MEK/ERK signaling. Conclusion MAGOH knockdown inhibited the tumorigenesis of gastric cancer via mediation of b-RAF/MEK/ERK signaling, and double knockdown of MAGOH and MAGOHB exhibited much better anti-tumor effects. This finding might provide us a new strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Oncology, First Affiliated Hospital,  Zhejiang University School of Medicine, Hangzhou 310003, People's Republic of China
| | - Zhongqi Li
- Department of Oncology, First Affiliated Hospital,  Zhejiang University School of Medicine, Hangzhou 310003, People's Republic of China
| | - Xuan Wu
- Department of Oncology, First Affiliated Hospital,  Zhejiang University School of Medicine, Hangzhou 310003, People's Republic of China
| | - Laizhen Tou
- Department of Oncology, First Affiliated Hospital,  Zhejiang University School of Medicine, Hangzhou 310003, People's Republic of China
| | - Jingjing Zheng
- Department of General Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, People's Republic of China
| | - Donghui Zhou
- Department of Oncology, First Affiliated Hospital,  Zhejiang University School of Medicine, Hangzhou 310003, People's Republic of China
| |
Collapse
|
4
|
Gangras P, Gallagher TL, Parthun MA, Yi Z, Patton RD, Tietz KT, Deans NC, Bundschuh R, Amacher SL, Singh G. Zebrafish rbm8a and magoh mutants reveal EJC developmental functions and new 3'UTR intron-containing NMD targets. PLoS Genet 2020; 16:e1008830. [PMID: 32502192 PMCID: PMC7310861 DOI: 10.1371/journal.pgen.1008830] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 06/23/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Many post-transcriptional mechanisms operate via mRNA 3'UTRs to regulate protein expression, and such controls are crucial for development. We show that homozygous mutations in two zebrafish exon junction complex (EJC) core genes rbm8a and magoh leads to muscle disorganization, neural cell death, and motor neuron outgrowth defects, as well as dysregulation of mRNAs subjected to nonsense-mediated mRNA decay (NMD) due to translation termination ≥ 50 nts upstream of the last exon-exon junction. Intriguingly, we find that EJC-dependent NMD also regulates a subset of transcripts that contain 3'UTR introns (3'UI) < 50 nts downstream of a stop codon. Some transcripts containing such stop codon-proximal 3'UI are also NMD-sensitive in cultured human cells and mouse embryonic stem cells. We identify 167 genes that contain a conserved proximal 3'UI in zebrafish, mouse and humans. foxo3b is one such proximal 3'UI-containing gene that is upregulated in zebrafish EJC mutant embryos, at both mRNA and protein levels, and loss of foxo3b function in EJC mutant embryos significantly rescues motor axon growth defects. These data are consistent with EJC-dependent NMD regulating foxo3b mRNA to control protein expression during zebrafish development. Our work shows that the EJC is critical for normal zebrafish development and suggests that proximal 3'UIs may serve gene regulatory function in vertebrates.
Collapse
Affiliation(s)
- Pooja Gangras
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Thomas L. Gallagher
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Michael A. Parthun
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Zhongxia Yi
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Robert D. Patton
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
- Department of Physics, The Ohio State University, Ohio, United States of America
| | - Kiel T. Tietz
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Natalie C. Deans
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
- Department of Physics, The Ohio State University, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, United States of America
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Ohio, United States of America
| | - Sharon L. Amacher
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Ohio, United States of America
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children’s Hospital, Ohio, United States of America
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| |
Collapse
|