1
|
Sanati M, Pieterman I, Levy N, Akbari T, Tavakoli M, Hassani Najafabadi A, Amin Yavari S. Osteoimmunomodulation by bone implant materials: harnessing physicochemical properties and chemical composition. Biomater Sci 2025; 13:2836-2870. [PMID: 40289736 DOI: 10.1039/d5bm00357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Chronic inflammation at bone defect sites can impede regenerative processes, but local immune responses can be adjusted to promote healing. Regulating the osteoimmune microenvironment, particularly through macrophage polarization, has become a key focus in bone regeneration research. While bone implants are crucial for addressing significant bone defects, they are often recognized by the immune system as foreign, triggering inflammation that leads to bone resorption and implant issues like fibrous encapsulation and aseptic loosening. Developing osteoimmunomodulatory implants offers a promising approach to transforming destructive inflammation into healing processes, enhancing implant integration and bone regeneration. This review explores strategies based on tuning the physicochemical attributes and chemical composition of materials in engineering osteoimmunomodulatory and pro-regenerative bone implants.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ines Pieterman
- Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Natacha Levy
- Metabolic Diseases Pediatrics Division, University Medical Centre Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohamadreza Tavakoli
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Qi H, Zhang B, Lian F. 3D-printed bioceramic scaffolds for bone defect repair: bone aging and immune regulation. Front Bioeng Biotechnol 2025; 13:1557203. [PMID: 40242352 PMCID: PMC12000889 DOI: 10.3389/fbioe.2025.1557203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
The management of bone defects, particularly in aging populations, remains a major clinical challenge. The immune microenvironment plays an important role in the repair of bone defects and a favorable immune environment can effectively promote the repair of bone defects. However, aging is closely associated with chronic low-grade systemic inflammation, which adversely affects bone healing. Persistent low-grade systemic inflammation critically regulates bone repair through all stages. This review explores the potential of 3D-printed bioceramic scaffolds in bone defect repair, focusing on their capacity to modulate the immune microenvironment and counteract the effects of bone aging. The scaffolds not only provide structural support for bone regeneration but also serve as effective carriers for anti-osteoporosis drugs, offering a novel therapeutic strategy for treating osteoporotic bone defects. By regulating inflammation and improving the immune response, 3D-printed bioceramic scaffolds may significantly enhance bone repair, particularly in the context of age-related bone degeneration. This approach underscores the potential of advanced biomaterials in addressing the dual challenges of bone aging and immune dysregulation, offering promising avenues for the development of effective treatments for bone defects in the elderly. We hope the concepts discussed in this review could offer novel therapeutic strategies for bone defect repair, and suggest promising avenues for the future development and optimization of bioceramic scaffolds.
Collapse
Affiliation(s)
- Haoran Qi
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng Lian
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| |
Collapse
|
3
|
Liu L, Chen H, Zhao X, Han Q, Xu Y, Liu Y, Zhang A, Li Y, Zhang W, Chen B, Wang J. Advances in the application and research of biomaterials in promoting bone repair and regeneration through immune modulation. Mater Today Bio 2025; 30:101410. [PMID: 39811613 PMCID: PMC11731593 DOI: 10.1016/j.mtbio.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
With the ongoing development of osteoimmunology, increasing evidence indicates that the local immune microenvironment plays a critical role in various stages of bone formation. Consequently, modulating the immune inflammatory response triggered by biomaterials to foster a more favorable immune microenvironment for bone regeneration has emerged as a novel strategy in bone tissue engineering. This review first examines the roles of various immune cells in bone tissue injury and repair. Then, the contributions of different biomaterials, including metals, bioceramics, and polymers, in promoting osteogenesis through immune regulation, as well as their future development directions, are discussed. Finally, various design strategies, such as modifying the physicochemical properties of biomaterials and integrating bioactive substances, to optimize material design and create an immune environment conducive to bone formation, are explored. In summary, this review comprehensively covers strategies and approaches for promoting bone tissue regeneration through immune modulation. It offers a thorough understanding of current research trends in biomaterial-based immune regulation, serving as a theoretical reference for the further development and clinical application of biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Li Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Xue Zhao
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Qing Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yongjun Xu
- Department of Orthopedics Surgery, Wangqing County People's Hospital, Yanbian, 133000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yongyue Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Weilong Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Bingpeng Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| |
Collapse
|
4
|
Skubis-Sikora A, Hudecki A, Sikora B, Wieczorek P, Hermyt M, Hreczka M, Likus W, Markowski J, Siemianowicz K, Kolano-Burian A, Czekaj P. Toxicological Assessment of Biodegradable Poli-ε-Caprolactone Polymer Composite Materials Containing Hydroxyapatite, Bioglass, and Chitosan as Potential Biomaterials for Bone Regeneration Scaffolds. Biomedicines 2024; 12:1949. [PMID: 39335462 PMCID: PMC11428512 DOI: 10.3390/biomedicines12091949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Polycaprolactone (PCL) is a biodegradable polyester that might be used in tissue engineering to obtain scaffolds for bone reconstruction using 3D-printing technologies. New material compositions based on PCL, with improved physicochemical properties and excellent biocompatibility, would improve its applicability in bone regeneration. The aim of this study was to assess the potential toxic effects of PCL-based composite materials containing 5% hydroxyapatite (PCL/SHAP), 5% bioglass (PCL/BIO), or 5% chitosan (PCL/CH) on MG-63 human fibroblast-like cells in vitro. Material tests were carried out using X-ray diffraction, differential thermal analysis/thermal gravimetry, BET specific surface analysis, and scanning electron microscopy. The effect of the biomaterials on the MG-63 cells was then assessed based on toxicity tests using indirect and direct contact methods. The analysis showed that the tested biomaterials did not significantly affect cell morphology, viability, proliferation, or migration. We concluded that biodegradable PCL-based scaffolds may be suitable for tissue scaffold production, and the addition of bioglass improves the growth of cultured cells.
Collapse
Affiliation(s)
- Aleksandra Skubis-Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| | - Andrzej Hudecki
- Łukasiewicz Research Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland; (A.H.); (M.H.); (A.K.-B.)
| | - Bartosz Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| | - Patrycja Wieczorek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| | - Mateusz Hermyt
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| | - Marek Hreczka
- Łukasiewicz Research Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland; (A.H.); (M.H.); (A.K.-B.)
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Krzysztof Siemianowicz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Aleksandra Kolano-Burian
- Łukasiewicz Research Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland; (A.H.); (M.H.); (A.K.-B.)
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| |
Collapse
|
5
|
Tangporncharoen R, Phanus-Umporn C, Prachayasittikul S, Nantasenamat C, Prachayasittikul V, Supokawej A. Computer-guided design of novel nitrogen-based heterocyclic sphingosine-1-phosphate (S1P) activators as osteoanabolic agents. EXCLI JOURNAL 2024; 23:818-832. [PMID: 39574964 PMCID: PMC11579520 DOI: 10.17179/excli2024-7214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 11/24/2024]
Abstract
Osteoanabolic agents, or drugs that promote bone formation, have gained considerable attention for osteoporosis management due to their curative and preventive potentials. Sphingosine-1-phosphate receptor 2 (S1PR2) is an attractive drug target, in which its activation leads to osteogenesis-promoting effect. Nitrogen-containing heterocyclic scaffolds (i.e., quinoxaline and indole) are promising pharmacophores possessing diverse bioactivities and were reported as S1PR2 activators. Quantitative structure-activity relationship (QSAR) modeling is a computational approach well-known as a fundamental tool for facilitating successful drug development. This study demonstrates the discovery of new S1PR2 activators using computational-driven rational design. Herein, an original dataset of nitrogen-containing S1PR2 activators was collected from ChEMBL database. The retrieved dataset was separated into two datasets according to their core scaffolds (i.e., quinoxaline and indole). QSAR modeling was performed using multiple linear regression (MLR) algorithm to successfully obtain two models with good predictive performance. The constructed models also revealed key properties playing essential roles for potent S1PR2 activation, such as Van der Waals volume (R2v+ and E3v), mass (MATS5m and Km), electronegativity (H3e), and number of 5-membered rings (nR05). Subsequently, the constructed models were further employed to guide rational design and predict S1PR2 activating effects of an additional set of 752 structurally modified compounds. Most of the modified compounds were predicted to have higher potency than their parents, and a set of promising potent newly designed compounds was highlighted. Additionally, drug-likeness prediction was performed to reveal that most of the newly designed compounds are druggable compounds with possibility for further development.
Collapse
Affiliation(s)
- Rattanawan Tangporncharoen
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chuleeporn Phanus-Umporn
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | | | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
6
|
Ali M, He Y, Chang ASN, Wu A, Liu J, Cao Y, Mohammad Y, Popat A, Walsh L, Ye Q, Xu C, Kumeria T. Osteoimmune-modulating and BMP-2-eluting anodised 3D printed titanium for accelerated bone regeneration. J Mater Chem B 2023; 12:97-111. [PMID: 37842835 DOI: 10.1039/d3tb01029e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
3D printing of titanium (Ti) metal has potential to transform the field of personalised orthopaedics and dental implants. However, the impacts of controlled surface topographical features of 3D printed Ti implants on their interactions with the cellular microenvironment and incorporation of biological growth factors, which are critical in guiding the integration of implants with bone, are not well studied. In the present study, we explore the role of surface topological features of 3D printed Ti implants using an anodised titania nanotube (TiNT) surface layer in guiding their immune cell interaction and ability to deliver bioactive form of growth factors. TiNT layers with precisely controlled pore diameter (between 21and 130 nm) were anodically grown on 3D printed Ti surfaces to impart a nano-micro rough topology. Immune biomarker profiles at gene and protein levels show that anodised 3D Ti surfaces with smaller pores resulted in classical activation of macrophages (M1-like), while larger pores (i.e., >100 nm) promoted alternate activation of macrophages (M2-like). The in vitro bone mineralisation studies using the conditioned media from the immunomodulatory studies elucidate a clear impact of pore diameter on bone mineralisation. The tubular structure of TiNTs was utilised as a container to incorporate recombinant human bone morphogenetic protein-2 (BMP-2) in the presence of various sugar and polymeric cryoprotectants. Sucrose offered the most sustainable release of preserved BMP-2 from TiNTs. Downstream effects of released BMP-2 on macrophages as well as bone mineralisation were assessed showing bioactivity retention of the released rhBMP-2. Overall, the TiNT surface topography in combination with controlled, sustained, and local release of bioactive growth factors can potentially enhance the osseointegration outcomes of custom 3D printed Ti implants in the clinic.
Collapse
Affiliation(s)
- Masood Ali
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Wuhan University of Science and Technology, Wuhan 430040, China
| | - Anna Sze Ni Chang
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Alice Wu
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Jingyu Liu
- School of Mechanical, Medical and process Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Yousuf Mohammad
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Laurie Walsh
- School of Dentistry, The University of Queensland, Herston, Queensland 4006, Australia.
| | - Qingsong Ye
- Centre of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, Queensland 4006, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
Zhou J, See CW, Sreenivasamurthy S, Zhu D. Customized Additive Manufacturing in Bone Scaffolds-The Gateway to Precise Bone Defect Treatment. RESEARCH (WASHINGTON, D.C.) 2023; 6:0239. [PMID: 37818034 PMCID: PMC10561823 DOI: 10.34133/research.0239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
In the advancing landscape of technology and novel material development, additive manufacturing (AM) is steadily making strides within the biomedical sector. Moving away from traditional, one-size-fits-all implant solutions, the advent of AM technology allows for patient-specific scaffolds that could improve integration and enhance wound healing. These scaffolds, meticulously designed with a myriad of geometries, mechanical properties, and biological responses, are made possible through the vast selection of materials and fabrication methods at our disposal. Recognizing the importance of precision in the treatment of bone defects, which display variability from macroscopic to microscopic scales in each case, a tailored treatment strategy is required. A patient-specific AM bone scaffold perfectly addresses this necessity. This review elucidates the pivotal role that customized AM bone scaffolds play in bone defect treatment, while offering comprehensive guidelines for their customization. This includes aspects such as bone defect imaging, material selection, topography design, and fabrication methodology. Additionally, we propose a cooperative model involving the patient, clinician, and engineer, thereby underscoring the interdisciplinary approach necessary for the effective design and clinical application of these customized AM bone scaffolds. This collaboration promises to usher in a new era of bioactive medical materials, responsive to individualized needs and capable of pushing boundaries in personalized medicine beyond those set by traditional medical materials.
Collapse
Affiliation(s)
- Juncen Zhou
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Carmine Wang See
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Sai Sreenivasamurthy
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
8
|
Francisco I, Basílio Â, Ribeiro MP, Nunes C, Travassos R, Marques F, Pereira F, Paula AB, Carrilho E, Marto CM, Vale F. Three-Dimensional Impression of Biomaterials for Alveolar Graft: Scoping Review. J Funct Biomater 2023; 14:76. [PMID: 36826875 PMCID: PMC9961517 DOI: 10.3390/jfb14020076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Craniofacial bone defects are one of the biggest clinical challenges in regenerative medicine, with secondary autologous bone grafting being the gold-standard technique. The development of new three-dimensional matrices intends to overcome the disadvantages of the gold-standard method. The aim of this paper is to put forth an in-depth review regarding the clinical efficiency of available 3D printed biomaterials for the correction of alveolar bone defects. A survey was carried out using the following databases: PubMed via Medline, Cochrane Library, Scopus, Web of Science, EMBASE, and gray literature. The inclusion criteria applied were the following: in vitro, in vivo, ex vivo, and clinical studies; and studies that assessed bone regeneration resorting to 3D printed biomaterials. The risk of bias of the in vitro and in vivo studies was performed using the guidelines for the reporting of pre-clinical studies on dental materials by Faggion Jr and the SYRCLE risk of bias tool, respectively. In total, 92 publications were included in the final sample. The most reported three-dimensional biomaterials were the PCL matrix, β-TCP matrix, and hydroxyapatite matrix. These biomaterials can be combined with different polymers and bioactive molecules such as rBMP-2. Most of the included studies had a high risk of bias. Despite the advances in the research on new three-dimensionally printed biomaterials in bone regeneration, the existing results are not sufficient to justify the application of these biomaterials in routine clinical practice.
Collapse
Affiliation(s)
- Inês Francisco
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (ICBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Ângela Basílio
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Madalena Prata Ribeiro
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Catarina Nunes
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Raquel Travassos
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Filipa Marques
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Flávia Pereira
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Anabela Baptista Paula
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (ICBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, University of Coimbra, 3000-075 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-075 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3030-370 Coimbra, Portugal
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Eunice Carrilho
- Coimbra Institute for Clinical and Biomedical Research (ICBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, University of Coimbra, 3000-075 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-075 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3030-370 Coimbra, Portugal
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Carlos Miguel Marto
- Coimbra Institute for Clinical and Biomedical Research (ICBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, University of Coimbra, 3000-075 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-075 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3030-370 Coimbra, Portugal
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Francisco Vale
- Institute of Orthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (ICBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, University of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
9
|
Pan X, Yuan S, Xun X, Fan Z, Xue X, Zhang C, Wang J, Deng J. Long-Term Recruitment of Endogenous M2 Macrophages by Platelet Lysate-Rich Plasma Macroporous Hydrogel Scaffold for Articular Cartilage Defect Repair. Adv Healthc Mater 2022; 11:e2101661. [PMID: 34969180 DOI: 10.1002/adhm.202101661] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/21/2021] [Indexed: 01/08/2023]
Abstract
After cartilage damage, a large number of monocytes/macrophages infiltrate into adjacent synovium and the resident macrophages in synovial tissue transform to activated macrophages (M1), which secrete pro-inflammatory cytokines to induce sustained inflammation and chondrocyte apoptotic. However, current clinical therapies for cartilage repair can rarely achieve long-term anti-inflammatory regulation and satisfactory outcomes. Herein, a platelet lysate-rich plasma macroporous hydrogel (PLPMH) scaffold with around 100 µm pore size and 1.25 MPa Young's modulus is developed to sustainedly recruit and polarize endogenous anti-inflammatory macrophages (M2) for improving cartilage defect repair. PLPMH scaffold can steadily release sphingosine1-phosphate and proteins via gradual degradation, thus inducing M2 macrophages migration or resting (M0) macrophages migration and then polarization to M2 phenotype, and improving the secretion of anti-inflammatory cytokines. Furthermore, PLPMH scaffold exhibits negligible inflammatory responses in vivo and promotes endogenous M2 macrophage infiltration in large numbers and long-time duration to provide a local anti-inflammatory microenvironment, which even lasts for 42 d. In a rabbit model of cartilage defect, PLPMH scaffold increases the ratio of M2 macrophages and improves cartilage tissue regeneration. These studies support that PLPMH scaffold may have a great potential in articular cartilage tissue engineering by providing an anti-inflammatory and pro-regenerative microenvironment.
Collapse
Affiliation(s)
- Xiaoyun Pan
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Shanshan Yuan
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Xiaojie Xun
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | | | - Xinghe Xue
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Changhuan Zhang
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Jilong Wang
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Junjie Deng
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| |
Collapse
|
10
|
Wang D, Hou J, Xia C, Wei C, Zhu Y, Qian W, Qi S, Wu Y, Shi Y, Qin K, Wu L, Yin F, Chen Z, Li W. Multi-element processed pyritum mixed to β-tricalcium phosphate to obtain a 3D-printed porous scaffold: An option for treatment of bone defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112326. [PMID: 34474877 DOI: 10.1016/j.msec.2021.112326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Bone defects remain a challenging problem for doctors and patients in clinical practice. Processed pyritum is a traditional Chinese medicine that is often used to clinically treat bone fractures. It contains mainly Fe, Zn, Cu, Mn, and other elements. In this study, we added the extract of processed pyritum to β-tricalcium phosphate and produced a porous composite TPP (TCP/processed pyritum) scaffold using digital light processing (DLP) 3D printing technology. Scanning electron microscopy (SEM) analysis revealed that TPP scaffolds contained interconnected pore structures. When compared with TCP scaffolds (1.35 ± 0.15 MPa), TPP scaffolds (5.50 ± 0.24 MPa) have stronger mechanical strength and can effectively induce osteoblast proliferation, differentiation, and mineralization in vitro. Meanwhile, the in vivo study showed that the TPP scaffold had better osteogenic capacity than the TCP scaffold. Furthermore, the TPP scaffold had good biosafety after implantation. In summary, the TPP scaffold is a promising biomaterial for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Dan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, PR China
| | - Jingxia Hou
- Department of Pharmacy, Yongcheng City People's Hospital, Henan, Yongcheng 476600, PR China
| | - Chenjie Xia
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, PR China
| | - Chenxu Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, PR China
| | - Yuan Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, PR China
| | - Weiwei Qian
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, PR China
| | - Shuyang Qi
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, PR China
| | - Yu Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, PR China; Department of Pharmacy, Nantong Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nantong 226000, PR China
| | - Yun Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, PR China
| | - Kunming Qin
- School of Pharmacy, Jiangsu Ocean University, Jiangsu, Lianyungang 222005, PR China
| | - Li Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, PR China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, PR China
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, PR China.
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, PR China.
| |
Collapse
|
11
|
Sadowska JM, Ginebra MP. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B 2021; 8:9404-9427. [PMID: 32970087 DOI: 10.1039/d0tb01379j] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regulatory role of the immune system in maintaining bone homeostasis and restoring its functionality, when disturbed due to trauma or injury, has become evident in recent years. The polarization of macrophages, one of the main constituents of the immune system, into the pro-inflammatory or anti-inflammatory phenotype has great repercussions for cellular crosstalk and the subsequent processes needed for proper bone regeneration such as angiogenesis and osteogenesis. In certain scenarios, the damaged osseous tissue requires the placement of synthetic bone grafts to facilitate the healing process. Inorganic biomaterials such as bioceramics or bioactive glasses are the most widely used due to their resemblance to the mineral phase of bone and superior osteogenic properties. The immune response of the host to the inorganic biomaterial, which is of an exogenous nature, might determine its fate, leading either to active bone regeneration or its failure. Therefore, various strategies have been employed, like the modification of structural/chemical features or the incorporation of bioactive molecules, to tune the interplay with the immune cells. Understanding how these particular modifications impact the polarization of macrophages and further osteogenic and osteoclastogenic events is of great interest in view of designing a new generation of osteoimmunomodulatory materials that support the regeneration of osseous tissue during all stages of bone healing.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 16, 08019 Barcelona, Spain. and Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Kim Y, Lee EJ, Davydov AV, Frukhbeyen S, Seppala JE, Takagi S, Chow L, Alimperti S. Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration. Biomed Mater 2020; 16. [PMID: 33254152 DOI: 10.1088/1748-605x/abcf03] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/30/2020] [Indexed: 11/12/2022]
Abstract
Biofabrication has been adapted in engineering patient-specific biosynthetic grafts for bone regeneration. Herein, we developed a 3D high-resolution, room-temperature printing approach to fabricate osteoconductive scaffolds using calcium phosphate cement (CPC). The non-aqueous CPC bioinks were composed of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA), and Polyvinyl butyral (PVB) dissolved in either ethanol (EtOH) or Tetrahydrofuran (THF). They were printed in an aqueous sodium phosphate bath, which performs as a hardening accelerator for hydroxyapatite (HA) formation and as a retainer for 3D microstructure. The PVB solvents, EtOH or THF, affected differently the slurry rheological properties, scaffold microstructure, mechanical properties, and osteoconductivity. Our proposed approach overcomes limitations of conventional fabrication methods, which require high-temperature (> 50 oC), low-resolution (> 400 μm) printing with an inadequate amount of large ceramic particles (> 35 μm). This proof-of-concept study opens venues in engineering high-resolution, implantable, and osteoconductive scaffolds with predetermined properties for bone regeneration.
Collapse
Affiliation(s)
- Yoontae Kim
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Eun-Jin Lee
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Albert V Davydov
- Metallurgy Division, National Institute of Standards and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Stanislav Frukhbeyen
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Jonathan E Seppala
- Materials Science and Engineering Division, National Institute of Standards and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, UNITED STATES
| | - Shozo Takagi
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Laurence Chow
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Stella Alimperti
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| |
Collapse
|
13
|
Abstract
Compared with non-degradable materials, biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects, and have attracted extensive attention from researchers. In the treatment of bone defects, scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role, which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue. Traditional biodegradable materials include polymers, ceramics and metals, which have been used in bone defect repairing for many years. Although these materials have more or fewer shortcomings, they are still the cornerstone of our development of a new generation of degradable materials. With the rapid development of modern science and technology, in the twenty-first century, more and more kinds of new biodegradable materials emerge in endlessly, such as new intelligent micro-nano materials and cell-based products. At the same time, there are many new fabrication technologies of improving biodegradable materials, such as modular fabrication, 3D and 4D printing, interface reinforcement and nanotechnology. This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing, especially the newly emerging materials and their fabrication technology in recent years, and look forward to the future research direction, hoping to provide researchers in the field with some inspiration and reference.
Collapse
Affiliation(s)
- Shuai Wei
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| | - Jian-Xiong Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| | - Lai Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong, 226001 China
| | - Xiao-Song Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong, 226001 China
| | - Xin-Long Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| |
Collapse
|
14
|
Glaeser JD, Salehi K, Kanim LE, Ju DG, Hyuk Yang J, Behrens PH, Eberlein SA, Metzger MF, Arabi Y, Stefanovic T, Sheyn D, W Bae H. Electrospun, synthetic bone void filler promotes human MSC function and BMP-2 mediated spinal fusion. J Biomater Appl 2020; 35:532-543. [PMID: 32627633 DOI: 10.1177/0885328220937999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Synthetic bone grafts are often used to achieve a well-consolidated fusion mass in spinal fusion procedures. These bone grafts function as scaffolds, and ideally support cell function and facilitate protein binding. OBJECTIVE The aim was to characterize an electrospun, synthetic bone void filler (Reb) for its bone morphogenetic protein (BMP)-2 release properties and support of human mesenchymal stem cell (hMSC) function in vitro, and its efficacy in promoting BMP-2-/bone marrow aspirate-(BMA)-mediated posterolateral spinal fusion (PLF) in vivo. METHODS BMP-2 release kinetics from Reb versus standard absorbable collagen sponge (ACS) was determined. hMSC adhesion and proliferation on Reb was tested using cell counting, fluorescence microscopy and MTS. Cell osteogenic differentiation was quantified via cellular alkaline phosphatase (ALP) activity. For in vivo analysis, 18 Lewis rats were treated during PLF surgery with the following groups: (I) Reb + BMA, (II) Reb + BMA + BMP-2 and (III) BMA. A safe, minimally effective dose of BMP-2 was used. Fusion consolidation was followed for 3 months using radiography and micro-CT. After sacrifice, fusion rate and biomechanical stiffness was determined using manual palpation, biomechanical tests and histology. RESULTS In vitro, BMP-2 release kinetics were similar between Reb versus ACS. MSC proliferation and differentiation were increased in the presence of Reb. At 3 months post-surgery, fusion rates were 29% (group I), 100% (group II), and 0% (group III). Biomechanical stiffness was higher in group II versus I. Micro-CT showed an increased bone volume and connectivity density in group II. Trabecular thickness was increased in group I versus II. H&E staining showed newly formed bone in group II only. CONCLUSIONS Reb possesses a high protein binding affinity and promotes hMSC function. Combination with BMA and minimal dose BMP-2 allowed for 100% bone fusion in vivo. This data suggests that a minimally effective dose of BMP-2 can be used when combined with Reb.
Collapse
Affiliation(s)
- Juliane D Glaeser
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Khosrowdad Salehi
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Linda Ea Kanim
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Derek G Ju
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jae Hyuk Yang
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Phillip H Behrens
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Samuel A Eberlein
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Melodie F Metzger
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yasaman Arabi
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tina Stefanovic
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dmitriy Sheyn
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyun W Bae
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
15
|
Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. Int J Mol Sci 2019; 20:ijms20225545. [PMID: 31703256 PMCID: PMC6888058 DOI: 10.3390/ijms20225545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue damage, irrespective from the underlying etiology, destroys tissue structure and, eventually, function. In attempt to achieve a morpho-functional recover of the damaged tissue, reparative/regenerative processes start in those tissues endowed with regenerative potential, mainly mediated by activated resident stem cells. These cells reside in a specialized niche that includes different components, cells and surrounding extracellular matrix (ECM), which, reciprocally interacting with stem cells, direct their cell behavior. Evidence suggests that ECM stiffness represents an instructive signal for the activation of stem cells sensing it by various mechanosensors, able to transduce mechanical cues into gene/protein expression responses. The actin cytoskeleton network dynamic acts as key mechanotransducer of ECM signal. The identification of signaling pathways influencing stem cell mechanobiology may offer therapeutic perspectives in the regenerative medicine field. Sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) signaling, acting as modulator of ECM, ECM-cytoskeleton linking proteins and cytoskeleton dynamics appears a promising candidate. This review focuses on the current knowledge on the contribution of S1P/S1PR signaling in the control of mechanotransduction in stem/progenitor cells. The potential contribution of S1P/S1PR signaling in the mechanobiology of skeletal muscle stem cells will be argued based on the intriguing findings on S1P/S1PR action in this mechanically dynamic tissue.
Collapse
|
16
|
Zafar MJ, Zhu D, Zhang Z. 3D Printing of Bioceramics for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3361. [PMID: 31618857 PMCID: PMC6829398 DOI: 10.3390/ma12203361] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023]
Abstract
Bioceramics have frequent use in functional restoration of hard tissues to improve human well-being. Additive manufacturing (AM) also known as 3D printing is an innovative material processing technique extensively applied to produce bioceramic parts or scaffolds in a layered perspicacious manner. Moreover, the applications of additive manufacturing in bioceramics have the capability to reliably fabricate the commercialized scaffolds tailored for practical clinical applications, and the potential to survive in the new era of effective hard tissue fabrication. The similarity of the materials with human bone histomorphometry makes them conducive to use in hard tissue engineering scheme. The key objective of this manuscript is to explore the applications of bioceramics-based AM in bone tissue engineering. Furthermore, the article comprehensively and categorically summarizes some novel bioceramics based AM techniques for the restoration of bones. At prior stages of this article, different ceramics processing AM techniques have been categorized, subsequently, processing of frequently used materials for bone implants and complexities associated with these materials have been elaborated. At the end, some novel applications of bioceramics in orthopedic implants and some future directions are also highlighted to explore it further. This review article will help the new researchers to understand the basic mechanism and current challenges in neophyte techniques and the applications of bioceramics in the orthopedic prosthesis.
Collapse
Affiliation(s)
| | - Dongbin Zhu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Zhengyan Zhang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|