1
|
Canli EG, Baykose A, Uslu LH, Canli M. Changes in energy reserves and responses of some biomarkers in freshwater mussels exposed to metal-oxide nanoparticles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104077. [PMID: 36740086 DOI: 10.1016/j.etap.2023.104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
In this study, responses of various biomarkers in the digestive gland and foot muscle of freshwater mussels (Unio tigridis) were investigated following exposure to Al2O3, CuO and TiO2 nanoparticles (NPs) for 14 days at different concentrations (0, 1, 3 and 9 mg NP/L). Mussels were fed on unicellular algae (Chlorella vulgaris) cultured in the laboratory. NP exposures caused significant increases (p < 0.05) in the levels of total glutathione (GSH), reduced-glutathione (rGSH), oxidized-glutathione (GSSG) and malondialdehyde (MDA) in the digestive gland. Oppositely, there were significant (p < 0.05) decreases in acetylcholinesterase activity in the foot muscles. Total energy reserves of the digestive gland and foot muscle significantly (p < 0.05) decreased, but only at the highest NP exposures. Nevertheless, NP exposures did not alter (p > 0.05) the algae filtering capacity of mussels. This study demonstrated that the biomarkers belonging to different metabolic systems responded to NP exposures, suggesting their usage in the monitoring studies for freshwater systems.
Collapse
Affiliation(s)
- Esin G Canli
- University of Cukurova, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Adana, Turkey
| | - Ahmet Baykose
- University of Cukurova, Faculty of Sciences and Arts, Department of Biology, Adana, Turkey
| | - Leyla Hizarci Uslu
- University of Cukurova, Faculty of Fisheries, Department of Basic Sciences, Adana, Turkey
| | - Mustafa Canli
- University of Cukurova, Faculty of Sciences and Arts, Department of Biology, Adana, Turkey.
| |
Collapse
|
2
|
Gutop EO, Linkova NS, Kozhevnikova EO, Fridman NV, Ivko OM, Khavinson VK. AEDG Peptide Prevents Oxidative Stress in the Model of Induced Aging of Skin Fibroblasts. ADVANCES IN GERONTOLOGY 2022. [DOI: 10.1134/s2079057022020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Wen C, Ying Y, Zhao H, Jiang Q, Gan X, Wei Y, Wei J, Huang X. Resistance exercise affects catheter-related thrombosis in rats through miR-92a-3p, oxidative stress and the MAPK/NF-κB pathway. BMC Cardiovasc Disord 2021; 21:440. [PMID: 34530722 PMCID: PMC8444419 DOI: 10.1186/s12872-021-02233-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MiR-92a-3p and oxidative stress are associated with catheter-related thrombosis (CRT). As a kind of physical intervention, resistance exercise can effectively promote blood circulation. In this study, we investigated the roles of miR-92a-3p, oxidative stress and the P38 mitogen-activated protein kinase/nuclear factor-κB (MAPK/NF-κB) pathway in CRT during resistance exercise. METHODS The rat CRT model was used for resistance exercise intervention. Moreover, pathological changes from the right jugular vein to the right auricle were observed under an electron microscope. In addition, reactive oxygen species (ROS) production, malondialdehyde (MDA) activity and heme oxygenase (HO-1) level in rat serum were detected via ELISA. The expression levels of miR-92A-3p and HO-1 in the vascular tissues of the rats were determined via real-time quantitative PCR. Additionally, the expression levels of HO-1, NF-κB P65, p38MAPK and IκBa in the venous tissues of the rats were analysed by Western blot analysis. RESULTS The pathological results showed that the thrombosis incidence rate in the CRT + RE group was lower than that in the CRT group. In the CRT group, the expression levels of ROS and MDA, which are markers related to oxidative stress in serum, significantly increased whilst the expression of HO-1 decreased. In the venous tissue, the expression of miR-92a-3p increased, the level of HO-1 decreased, the levels of p38MAPK and NF-κB p65 significantly increased but that of P-IκBa and IκBa significantly decreased. In the CRT + RE group, after administering the resistance exercise intervention, ROS production and MDA activity in serum significantly decreased, the expression level of HO-1 increased and the expression level of miR-92a-3p in the venous tissues significantly decreased and was negatively correlated with that of HO-1. The levels of p38MAPK and NF-κB p65 significantly decreased but that of P- IκBa and IκBa significantly increased. CONCLUSION Resistance exercise intervention downregulated miR-92a-3p expression, repaired oxidative stress injury and prevented CRT formation.
Collapse
Affiliation(s)
- Cui Wen
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yanping Ying
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Huihan Zhao
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qingjuan Jiang
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiao Gan
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yan Wei
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jiani Wei
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xinxin Huang
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| |
Collapse
|
4
|
Luo W, Li J, Li Z, Lin T, Zhang L, Yang W, Mai Y, Liu R, Chen M, Dai C, Yang H, Lu J, Li H, Guan G, Huang M, Liu P, Li Z. HO-1 nuclear accumulation and interaction with NPM1 protect against stress-induced endothelial senescence independent of its enzymatic activity. Cell Death Dis 2021; 12:738. [PMID: 34312365 PMCID: PMC8313700 DOI: 10.1038/s41419-021-04035-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Heme oxygenase-1 (HO-1) has attracted accumulating attention for its antioxidant enzymatic activity. However, the exact regulatory role of its non-enzymatic activity in the cardiovascular system remains unaddressed. Here, we show that HO-1 was accumulated in the nuclei of stress-induced senescent endothelial cells, and conferred protection against endothelial senescence independent of its enzymatic activity. Overexpression of ΔHO-1, a truncated HO-1 without transmembrane segment (TMS), inhibited H2O2-induced endothelial senescence. Overexpression of ΔHO-1H25A, the catalytically inactive form of ΔHO-1, also exhibited anti-senescent effect. In addition, infection of recombinant adenovirus encoding ΔHO-1 with three nuclear localization sequences (NLS), alleviated endothelial senescence induced by knockdown of endogenous HO-1 by CRISPR/Cas9. Moreover, repression of HO-1 nuclear translocation by silencing of signal peptide peptidase (SPP), which is responsible for enzymatic cleavage of the TMS of HO-1, exacerbated endothelial senescence. Mechanistically, nuclear HO-1 interacted with NPM1 N-terminal portion, prevented NPM1 translocation from nucleolus to nucleoplasm, thus disrupted NPM1/p53/MDM2 interactions and inhibited p53 activation by NPM1, finally resisted endothelial senescence. This study provides a novel understanding of HO-1 as a promising therapeutic strategy for vascular senescence-related cardiovascular diseases.
Collapse
Affiliation(s)
- Wenwei Luo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Jingyan Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziqing Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Tong Lin
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Lili Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Wanqi Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Yanqi Mai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Ruiming Liu
- Department of Vascular and Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meiting Chen
- Emergency Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunmei Dai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Hanwei Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guimei Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China.
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Feng H, Wang Q, Xiao W, Zhang B, Jin Y, Lu H. LncRNA TTN-AS1 Regulates miR-524-5p and RRM2 to Promote Breast Cancer Progression. Onco Targets Ther 2020; 13:4799-4811. [PMID: 32547107 PMCID: PMC7261692 DOI: 10.2147/ott.s243482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies suggest many long non-coding RNAs (lncRNAs) are crucial oncogenes or tumor suppressors. This study intended to investigate the biological function and mechanism of lncRNA TTN antisense RNA 1 (TTN-AS1) in the progression of breast cancer (BC). Materials and Methods BC tissue samples were collected. The expression of TTN-AS1 in BC tissues and adjacent tissues was detected by qRT-PCR, and the relationship between pathological indicators and TTN-AS1 expression was analyzed by chi-square test. BC cell lines T47D and BT549 were utilized as cell models. CCK-8 assay and BrdU assay were used to detect the effect of TTN-AS1 on BC cell proliferation. Transwell assay was used to detect the effects of TTN-AS1 on cell migration and invasion. In addition, dual-luciferase reporter gene assay was used to confirm the targeting relationship between miR-524-5p and TTN-AS1. Western blot was used to detect the function of TTN-AS1 on regulating ribonucleotide reductase subunit 2 (RRM2) and survivin. Additionally, subcutaneous xenotransplanted tumor model and tail vein injection model were constructed in vivo. Results The expression of TTN-AS1 in BC tissues was significantly higher than that in normal tissues, and its high expression was correlated with adverse pathological indicators. Overexpression of TTN-AS1 significantly promoted the proliferation, migration and invasion of BC cells. TTN-AS1 knockdown suppressed the malignant phenotypes of BC cells. TTN-AS1 overexpression significantly impeded the expression of miR-524-5p, but increased the expression of RRM2. Conclusion TTN-AS1 exerts oncogenic function in BC by repressing miR-524-5p and increasing the expression of RRM2.
Collapse
Affiliation(s)
- Hui Feng
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Qi Wang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Wenjing Xiao
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Biyuan Zhang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Yonglong Jin
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Haijun Lu
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| |
Collapse
|
6
|
Mitochondria-Targeting Antioxidant Provides Cardioprotection through Regulation of Cytosolic and Mitochondrial Zn 2+ Levels with Re-Distribution of Zn 2+-Transporters in Aged Rat Cardiomyocytes. Int J Mol Sci 2019; 20:ijms20153783. [PMID: 31382470 PMCID: PMC6695787 DOI: 10.3390/ijms20153783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Aging is an important risk factor for cardiac dysfunction. Heart during aging exhibits a depressed mechanical activity, at least, through mitochondria-originated increases in ROS. Previously, we also have shown a close relationship between increased ROS and cellular intracellular free Zn2+ ([Zn2+]i) in cardiomyocytes under pathological conditions as well as the contribution of some re-expressed levels of Zn2+-transporters for redistribution of [Zn2+]i among suborganelles. Therefore, we first examined the cellular (total) [Zn2+] and then determined the protein expression levels of Zn2+-transporters in freshly isolated ventricular cardiomyocytes from 24-month rat heart compared to those of 6-month rats. The [Zn2+]i in the aged-cardiomyocytes was increased, at most, due to increased ZIP7 and ZnT8 with decreased levels of ZIP8 and ZnT7. To examine redistribution of the cellular [Zn2+]i among suborganelles, such as Sarco/endoplasmic reticulum, S(E)R, and mitochondria ([Zn2+]SER and [Zn2+]Mit), a cell model (with galactose) to mimic the aged-cell in rat ventricular cell line H9c2 was used and demonstrated that there were significant increases in [Zn2+]Mit with decreases in [Zn2+]SER. In addition, the re-distribution of these Zn2+-transporters were markedly changed in mitochondria (increases in ZnT7 and ZnT8 with no changes in ZIP7 and ZIP8) and S(E)R (increase in ZIP7 and decrease in ZnT7 with no changes in both ZIP8 and ZnT8) both of them isolated from freshly isolated ventricular cardiomyocytes from aged-rats. Furthermore, we demonstrated that cellular levels of ROS, both total and mitochondrial lysine acetylation (K-Acetylation), and protein-thiol oxidation were significantly high in aged-cardiomyocytes from 24-month old rats. Using a mitochondrial-targeting antioxidant, MitoTEMPO (1 µM, 5-h incubation), we provided an important data associated with the role of mitochondrial-ROS production in the [Zn2+]i-dyshomeostasis of the ventricular cardiomyocytes from 24-month old rats. Overall, our present data, for the first time, demonstrated that a direct mitochondria-targeting antioxidant treatment can be a new therapeutic strategy during aging in the heart through a well-controlled [Zn2+] distribution among cytosol and suborganelles with altered expression levels of the Zn2+-transporters.
Collapse
|
7
|
Saghebjoo M, Sadeghi-Tabas S, Saffari I, Ghane A, Dimauro I. Sex Differences in antiaging response to short- and long-term high-intensity interval exercise in rat cardiac muscle: Telomerase activity, total antioxidant/oxidant status. CHINESE J PHYSIOL 2019; 62:261-266. [DOI: 10.4103/cjp.cjp_52_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|