1
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
2
|
Sarkar R, Xu Z, Perera CJ, Apte MV. Emerging role of pancreatic stellate cell-derived extracellular vesicles in pancreatic cancer. Semin Cancer Biol 2023; 93:114-122. [PMID: 37225047 DOI: 10.1016/j.semcancer.2023.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer that is characterised by a prominent collagenous stromal reaction/desmoplasia surrounding tumour cells. Pancreatic stellate cells (PSCs) are responsible for the production of this stroma and have been shown to facilitate PDAC progression. Recently, extracellular vesicles (EVs), in particular, small extracellular vesicles (exosomes) have been a topic of interest in the field of cancer research for their emerging roles in cancer progression and diagnosis. EVs act as a form of intercellular communication by carrying their molecular cargo from one cell to another, regulating functions of the recipient cells. Although the knowledge of the bi-directional interactions between the PSCs and cancer cells that promote disease progression has advanced significantly over the past decade, studies on PSC-derived EVs in PDAC are currently rather limited. This review provides an overview of PDAC, pancreatic stellate cells and their interactions with cancer cells, as well as the currently known role of extracellular vesicles derived from PSCs in PDAC progression.
Collapse
Affiliation(s)
- Rohit Sarkar
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Chamini J Perera
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia.
| | - Minoti V Apte
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| |
Collapse
|
3
|
Jahedi H, Ramachandran A, Windsor J, Knowlton N, Blenkiron C, Print CG. Clinically Relevant Biology of Hyaluronic Acid in the Desmoplastic Stroma of Pancreatic Ductal Adenocarcinoma. Pancreas 2022; 51:1092-1104. [PMID: 37078930 DOI: 10.1097/mpa.0000000000002154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) is notorious for its poor outcome. The presence of a dense desmoplastic stroma is a hallmark of this malignancy, and abundant hyaluronic acid (HA) within this stroma is a common feature of PDAC. At the end of 2019, an HA-targeting drug, after initial promise, failed phase 3 clinical trials in PDAC. This failure in the face of such strong evidence for biological importance forces us to turn back to the research and seek a better understanding of HA biology in PDAC. Therefore, in this review, we reexamine what is known about HA biology, the methods used to detect and quantify HA, and the ability of the biological models in which HA has been investigated to recapitulate an HA-rich desmoplastic tumor stroma. The role of HA in PDAC relies on its complex interplay with a range of HA-associated molecules, which have not been as extensively investigated as HA itself. Therefore, using large genomic data sets, we cataloged the abundance and activity in PDAC of molecules that modulate HA synthesis, degradation, protein interactions, and receptor binding. Based on their association with clinical characteristics and individual patient outcomes, we suggest a small number of HA-associated molecules that warrant further investigation as biomarkers and drug targets.
Collapse
Affiliation(s)
- Hossein Jahedi
- From the Departments of Molecular Medicine and Pathology
| | | | | | | | | | | |
Collapse
|
4
|
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T, Singh S. Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev 2022; 189:114504. [PMID: 35998825 DOI: 10.1016/j.addr.2022.114504] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is emerging as one of the primary barriers in cancer therapy. Cancer-associated fibroblasts (CAF) are a common inhabitant of the TME in several tumor types and play a critical role in tumor progression and drug resistance via different mechanisms such as desmoplasia, angiogenesis, immune modulation, and cancer metabolism. Due to their abundance and significance in pro-tumorigenic mechanisms, CAF are gaining attention as a diagnostic target as well as to improve the efficacy of cancer therapy by their modulation. In this review, we highlight existing imaging techniques that are used for the visualization of CAF and CAF-induced fibrosis and provide an overview of compounds that are known to modulate CAF activity. Subsequently, we also discuss CAF-targeted and CAF-modulating nanocarriers. Finally, our review addresses ongoing challenges and provides a glimpse into the prospects that can spearhead the transition of CAF-targeted therapies from opportunity to reality.
Collapse
Affiliation(s)
- Rahul Rimal
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Prachi Desai
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Rasika Daware
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Aisa Hosseinnejad
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Section: Engineered Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Smriti Singh
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Ravindran A, Krieger KL, Kaushik AK, Hovington H, Mehdi S, Piyarathna DWB, Putluri V, Basil P, Rasaily U, Gu F, Dang T, Choi JM, Sonavane R, Jung SY, Wang L, Mehra R, Weigel NL, Putluri N, Rowley DR, Palapattu GS, Guillemette C, Lacombe L, Lévesque É, Sreekumar A. Uridine Diphosphate Glucuronosyl Transferase 2B28 (UGT2B28) Promotes Tumor Progression and Is Elevated in African American Prostate Cancer Patients. Cells 2022; 11:2329. [PMID: 35954173 PMCID: PMC9367340 DOI: 10.3390/cells11152329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in the United States and is associated with metabolic reprogramming and significant disparities in clinical outcomes among African American (AA) men. While the cause is likely multi-factorial, the precise reasons for this are unknown. Here, we identified a higher expression of the metabolic enzyme UGT2B28 in localized PCa and metastatic disease compared to benign adjacent tissue, in AA PCa compared to benign adjacent tissue, and in AA PCa compared to European American (EA) PCa. UGT2B28 was found to be regulated by both full-length androgen receptor (AR) and its splice variant, AR-v7. Genetic knockdown of UGT2B28 across multiple PCa cell lines (LNCaP, LAPC-4, and VCaP), both in androgen-replete and androgen-depleted states resulted in impaired 3D organoid formation and a significant delay in tumor take and growth rate of xenograft tumors, all of which were rescued by re-expression of UGT2B28. Taken together, our findings demonstrate a key role for the UGT2B28 gene in promoting prostate tumor growth.
Collapse
Affiliation(s)
- Anindita Ravindran
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
| | - Kimiko L. Krieger
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
| | - Akash K. Kaushik
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
| | - Hélène Hovington
- Faculty of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval Research Center (CRCHUQc-UL) and Université Laval, Québec, QC G1V 4G2, Canada; (H.H.); (S.M.); (L.L.); (É.L.)
| | - Sadia Mehdi
- Faculty of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval Research Center (CRCHUQc-UL) and Université Laval, Québec, QC G1V 4G2, Canada; (H.H.); (S.M.); (L.L.); (É.L.)
| | - Danthasinghe Waduge Badrajee Piyarathna
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
| | - Vasanta Putluri
- Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Paul Basil
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
| | - Uttam Rasaily
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
| | - Franklin Gu
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
| | - Truong Dang
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
| | - Jong Min Choi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.C.); (S.Y.J.)
| | - Rajni Sonavane
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.C.); (S.Y.J.)
| | - Lisha Wang
- Michigan Center for Translational Pathology, Ann Arbor, MI 48109, USA; (L.W.); (R.M.)
| | - Rohit Mehra
- Michigan Center for Translational Pathology, Ann Arbor, MI 48109, USA; (L.W.); (R.M.)
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI 48109, USA;
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nancy L. Weigel
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
| | - Nagireddy Putluri
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
- Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA;
- Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R. Rowley
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
| | - Ganesh S. Palapattu
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI 48109, USA;
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chantal Guillemette
- Faculty of Pharmacy, Pharmacogenomics Laboratory, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval Research Center (CRCHUQc-UL) and Université Laval, Québec, QC G1V 4G2, Canada;
| | - Louis Lacombe
- Faculty of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval Research Center (CRCHUQc-UL) and Université Laval, Québec, QC G1V 4G2, Canada; (H.H.); (S.M.); (L.L.); (É.L.)
| | - Éric Lévesque
- Faculty of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval Research Center (CRCHUQc-UL) and Université Laval, Québec, QC G1V 4G2, Canada; (H.H.); (S.M.); (L.L.); (É.L.)
| | - Arun Sreekumar
- Department of Molecular and Cell Biology, Baylor College of Medicine, 120D, Jewish Building, Houston, TX 77030, USA; (A.R.); (K.L.K.); (A.K.K.); (D.W.B.P.); (P.B.); (U.R.); (F.G.); (T.D.); (R.S.); (N.L.W.); (N.P.); (D.R.R.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.C.); (S.Y.J.)
- Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Kokoretsis D, Maniaki EK, Kyriakopoulou K, Koutsakis C, Piperigkou Z, Karamanos NK. Hyaluronan as "Agent Smith" in cancer extracellular matrix pathobiology: Regulatory roles in immune response, cancer progression and targeting. IUBMB Life 2022; 74:943-954. [PMID: 35261139 DOI: 10.1002/iub.2608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/16/2022]
Abstract
Extracellular matrix (ECM) critically regulates cancer cell behavior by governing cell signaling and properties. Hyaluronan (HA) acts as a structural and functional ECM component that mediates critical properties of cancer cells in a molecular size-dependent manner. HA fragments secreted by cancer-associated fibroblasts (CAFs) reveal the correlation of HA to CAF-mediated matrix remodeling, a key step for the initiation of metastasis. The main goal of this article is to highlight the vital functions of HA in cancer cell initiation and progression as well as HA-mediated paracrine interactions among cancer and stromal cells. Furthermore, the HA implication in mediating immune responses to cancer progression is also discussed. Novel data on the role of HA in the formation of pre-metastatic niche may contribute towards the improvement of current theranostic approaches that benefit cancer management.
Collapse
Affiliation(s)
- Dimitris Kokoretsis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Evangelia-Konstantina Maniaki
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
7
|
Periyasamy L, Muruganantham B, Park WY, Muthusami S. Phyto-targeting the CEMIP Expression as a Strategy to Prevent Pancreatic Cancer Metastasis. Curr Pharm Des 2022; 28:922-946. [PMID: 35236267 DOI: 10.2174/1381612828666220302153201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Metastasis of primary pancreatic cancer (PC) to adjacent or distant organs is responsible for the poor survival rate of affected individuals. Chemotherapy, radiotherapy, and immunotherapy are currently being prescribed to treat PC in addition to surgical resection. Surgical resection is the preferred treatment for PC that leads to 20% of 5-year survival, but only less than 20% of patients are eligible for surgical resection because of the poor prognosis. To improve the prognosis and clinical outcome, early diagnostic markers need to be identified, and targeting them would be of immense benefit to increase the efficiency of the treatment. Cell migration-inducing hyaluronan-binding protein (CEMIP) is identified as an important risk factor for the metastasis of various cancers, including PC. Emerging studies have pointed out the crucial role of CEMIP in the regulation of various signaling mechanisms, leading to enhanced migration and metastasis of PC. METHODS The published findings on PC metastasis, phytoconstituents, and CEMIP were retrieved from Pubmed, ScienceDirect, and Cochrane Library. Computational tools, such as gene expression profiling interactive analysis (GEPIA) and Kaplan-Meier (KM) plotter, were used to study the relationship between CEMIP expression and survival of PC individuals. RESULTS Gene expression analysis using the GEPIA database identified a stupendous increase in the CEMIP transcript in PC compared to adjacent normal tissues. KM plotter analysis revealed the impact of CEMIP on the overall survival (OS) and disease-free survival (DFS) among PC patients. Subsequently, several risk factors associated with PC development were screened, and their ability to regulate CEMIP gene expression was analyzed using computational tools. CONCLUSION The current review is focused on gathering information regarding the regulatory role of phytocomponents in PC migration and exploring their possible impact on the CEMIP expression.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| |
Collapse
|
8
|
Liu X, Wang W, Liu X, Zhang Z, Yu L, Li R, Guo D, Cai W, Quan X, Wu H, Dai M, Liang Z. Multi-omics analysis of intra-tumoural and inter-tumoural heterogeneity in pancreatic ductal adenocarcinoma. Clin Transl Med 2022; 12:e670. [PMID: 35061935 PMCID: PMC8782496 DOI: 10.1002/ctm2.670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is associated with the tumour heterogeneity. To explore intra- and inter-tumoural heterogeneity in PDAC, we analysed the multi-omics profiles of 61 PDAC lesion samples, along with the matched pancreatic normal tissue samples, from 19 PDAC patients. Haematoxylin and Eosin (H&E) staining revealed that diversely differentiated lesions coexisted both within and across individual tumours. Whole exome sequencing (WES) of samples from multi-region revealed diverse types of mutations in diverse genes between cancer cells within a tumour and between tumours from different individuals. The copy number variation (CNV) analysis also showed that PDAC exhibited intra- and inter-tumoural heterogeneity in CNV and that high average CNV burden was associated poor prognosis of the patients. Phylogenetic tree analysis and clonality/timing analysis of mutations displayed diverse evolutionary pathways and spatiotemporal characteristics of genomic alterations between different lesions from the same or different tumours. Hierarchical clustering analysis illustrated higher inter-tumoural heterogeneity than intra-tumoural heterogeneity of PDAC at the transcriptional levels as lesions from the same patients are grouped into a single cluster. Immune marker genes are differentially expressed in different regions and tumour samples as shown by tumour microenvironment (TME) analysis. TME appeared to be more heterogeneous than tumour cells in the same patient. Lesion-specific differentially methylated regions (DMRs) were identified by methylated DNA immunoprecipitation sequencing (MeDIP-seq). Furthermore, the integration analysis of multi-omics data showed that the mRNA levels of some genes, such as PLCB4, were significantly correlated with the gene copy numbers. The mRNA expressions of potential PDAC biomarkers ZNF521 and KDM6A were correlated with copy number alteration and methylation, respectively. Taken together, our results provide a comprehensive view of molecular heterogeneity and evolutionary trajectories of PDAC and may guide personalised treatment strategies in PDAC therapy.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of PathologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandongChina
| | - Wenqian Wang
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoding Liu
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhiwen Zhang
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lianyuan Yu
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ruiyu Li
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dan Guo
- Clinical BiobankMedical Research CentrePeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Weijing Cai
- Shanghai Tongshu Biotechnology Co., LtdShanghaiChina
| | - Xueping Quan
- Shanghai Tongshu Biotechnology Co., LtdShanghaiChina
| | - Huanwen Wu
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Menghua Dai
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhiyong Liang
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
9
|
Zhang Z, Zhang H, Liu T, Chen T, Wang D, Tang D. Heterogeneous Pancreatic Stellate Cells Are Powerful Contributors to the Malignant Progression of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:783617. [PMID: 34988078 PMCID: PMC8722736 DOI: 10.3389/fcell.2021.783617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer is associated with highly malignant tumors and poor prognosis due to strong therapeutic resistance. Accumulating evidence shows that activated pancreatic stellate cells (PSC) play an important role in the malignant progression of pancreatic cancer. In recent years, the rapid development of single-cell sequencing technology has facilitated the analysis of PSC population heterogeneity, allowing for the elucidation of the relationship between different subsets of cells with tumor development and therapeutic resistance. Researchers have identified two spatially separated, functionally complementary, and reversible subtypes, namely myofibroblastic and inflammatory PSC. Myofibroblastic PSC produce large amounts of pro-fibroproliferative collagen fibers, whereas inflammatory PSC express large amounts of inflammatory cytokines. These distinct cell subtypes cooperate to create a microenvironment suitable for cancer cell survival. Therefore, further understanding of the differentiation of PSC and their distinct functions will provide insight into more effective treatment options for pancreatic cancer patients.
Collapse
Affiliation(s)
- Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Tian Chen
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Institute of General Surgery, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Institute of General Surgery, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Watt DM, Morton JP. Heterogeneity in Pancreatic Cancer Fibroblasts-TGFβ as a Master Regulator? Cancers (Basel) 2021; 13:4984. [PMID: 34638468 PMCID: PMC8508541 DOI: 10.3390/cancers13194984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 02/03/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is an aggressive disease for which there are very few available therapies. It is notable for its high degree of tumour complexity, with the tumour microenvironment often accounting for the majority of the tumour volume. Until recently, the biology of the stroma was poorly understood, particularly in terms of heterogeneity. Recent research, however, has shed light on the intricacy of signalling within the stroma and particularly the molecular and functional heterogeneity of the cancer associated fibroblasts. In this review, we summarise the recent improvements in our understanding of the different fibroblast populations within PDAC, with a focus on the role TGFβ plays to dictate their formation and function. These studies have highlighted some of the reasons for the failure of trials targeting the tumour stroma, however, there are still considerable gaps in our knowledge, and more work is needed to make effective fibroblast targeting a reality in the clinic.
Collapse
Affiliation(s)
- Dale M. Watt
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK;
| | - Jennifer P. Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
11
|
Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Cancers (Basel) 2021; 13:1441. [PMID: 33809973 PMCID: PMC8005147 DOI: 10.3390/cancers13061441] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue functionality and integrity demand continuous changes in distribution of major components in the extracellular matrices (ECMs) under normal conditions aiming tissue homeostasis. Major matrix degrading proteolytic enzymes are matrix metalloproteinases (MMPs), plasminogen activators, atypical proteases such as intracellular cathepsins and glycolytic enzymes including heparanase and hyaluronidases. Matrix proteases evoke epithelial-to-mesenchymal transition (EMT) and regulate ECM turnover under normal procedures as well as cancer cell phenotype, motility, invasion, autophagy, angiogenesis and exosome formation through vital signaling cascades. ECM remodeling is also achieved by glycolytic enzymes that are essential for cancer cell survival, proliferation and tumor progression. In this article, the types of major matrix remodeling enzymes, their effects in cancer initiation, propagation and progression as well as their pharmacological targeting and ongoing clinical trials are presented and critically discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | | | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| |
Collapse
|
12
|
Domen A, Quatannens D, Zanivan S, Deben C, Van Audenaerde J, Smits E, Wouters A, Lardon F, Roeyen G, Verhoeven Y, Janssens A, Vandamme T, van Dam P, Peeters M, Prenen H. Cancer-Associated Fibroblasts as a Common Orchestrator of Therapy Resistance in Lung and Pancreatic Cancer. Cancers (Basel) 2021; 13:987. [PMID: 33673405 PMCID: PMC7956441 DOI: 10.3390/cancers13050987] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer arises from mutations accruing within cancer cells, but the tumor microenvironment (TME) is believed to be a major, often neglected, factor involved in therapy resistance and disease progression. Cancer-associated fibroblasts (CAFs) are prominent and key components of the TME in most types of solid tumors. Extensive research over the past decade revealed their ability to modulate cancer metastasis, angiogenesis, tumor mechanics, immunosuppression, and drug access through synthesis and remodeling of the extracellular matrix and production of growth factors. Thus, they are considered to impede the response to current clinical cancer therapies. Therefore, targeting CAFs to counteract these protumorigenic effects, and overcome the resistance to current therapeutic options, is an appealing and emerging strategy. In this review, we discuss how CAFs affect prognosis and response to clinical therapy and provide an overview of novel therapies involving CAF-targeting agents in lung and pancreatic cancer.
Collapse
Affiliation(s)
- Andreas Domen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - Sara Zanivan
- Cancer Research UK, Beatson Institute, Glasgow G611BD, UK;
- Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - Geert Roeyen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
- Department of Hepatobiliary Transplantation and Endocrine Surgery, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Yannick Verhoeven
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - Annelies Janssens
- Department of Pulmonology & Thoracic Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium;
| | - Timon Vandamme
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Peter van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
- Gynaecologic Oncology Unit, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| |
Collapse
|
13
|
Morphological Heterogeneity in Pancreatic Cancer Reflects Structural and Functional Divergence. Cancers (Basel) 2021; 13:cancers13040895. [PMID: 33672734 PMCID: PMC7924365 DOI: 10.3390/cancers13040895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic cancer has a poor prognosis, which is largely due to resistance to treatment. Tumor heterogeneity is a known cause for treatment failure and has been studied at the molecular level. Morphological heterogeneity is common but has not been investigated, despite the fact that pathology examination is an integral part of clinical diagnostics. This study assessed whether morphological heterogeneity reflects structural and functional diversity in key cancer biological processes. Using archival tissues from resected pancreatic cancer, we selected four common and distinct morphological phenotypes and demonstrated that these differed significantly for a panel of 26 structural and functional features of the cancer-cell and stromal compartments. The strong link between these features and morphological phenotypes allowed prediction of the latter based on the results for the panel of features. The findings of this study indicate that morphological heterogeneity reflects biological diversity and that its assessment may potentially provide clinically relevant information. Abstract Inter- and intratumor heterogeneity is an important cause of treatment failure. In human pancreatic cancer (PC), heterogeneity has been investigated almost exclusively at the genomic and transcriptional level. Morphological heterogeneity, though prominent and potentially easily assessable in clinical practice, remains unexplored. This proof-of-concept study aims at demonstrating that morphological heterogeneity reflects structural and functional divergence. From the wide morphological spectrum of conventional PC, four common and distinctive patterns were investigated in 233 foci from 39 surgical specimens. Twenty-six features involved in key biological processes in PC were analyzed (immuno-)histochemically and morphometrically: cancer cell proliferation (Ki67) and migration (collagen fiber alignment, MMP14), cancer stem cells (CD44, CD133, ALDH1), amount, composition and spatial arrangement of extracellular matrix (epithelial proximity, total collagen, collagen I and III, fibronectin, hyaluronan), cancer-associated fibroblasts (density, αSMA), and cancer-stroma interactions (integrins α2, α5, α1; caveolin-1). All features differed significantly between at least two of the patterns. Stromal and cancer-cell-related features co-varied with morphology and allowed prediction of the morphological pattern. In conclusion, morphological heterogeneity in the cancer-cell and stromal compartments of PC correlates with structural and functional diversity. As such, histopathology has the potential to inform on the operationality of key biological processes in individual tumors.
Collapse
|
14
|
Wu Y, Zhang C, Jiang K, Werner J, Bazhin AV, D'Haese JG. The Role of Stellate Cells in Pancreatic Ductal Adenocarcinoma: Targeting Perspectives. Front Oncol 2021; 10:621937. [PMID: 33520728 PMCID: PMC7841014 DOI: 10.3389/fonc.2020.621937] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a gastrointestinal malignancy with a dismal clinical outcome. Accumulating evidence suggests that activated pancreatic stellate cells (PSCs), the major producers of extracellular matrix (ECM), drive the severe stromal/desmoplastic reaction in PDAC. Furthermore, the crosstalk among PSCs, pancreatic cancer cells (PCCs) as well as other stroma cells can establish a growth-supportive tumor microenvironment (TME) of PDAC, thereby enhancing tumor growth, metastasis, and chemoresistance via various pathways. Recently, targeting stroma has emerged as a promising strategy for PDAC therapy, and several novel strategies have been proposed. The aim of our study is to give a profound review of the role of PSCs in PDAC progression and recent advances in stroma-targeting strategies.
Collapse
Affiliation(s)
- Yang Wu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chun Zhang
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kuirong Jiang
- Pancreas Center and Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
15
|
Novak I, Yu H, Magni L, Deshar G. Purinergic Signaling in Pancreas-From Physiology to Therapeutic Strategies in Pancreatic Cancer. Int J Mol Sci 2020; 21:E8781. [PMID: 33233631 PMCID: PMC7699721 DOI: 10.3390/ijms21228781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The purinergic signaling has an important role in regulating pancreatic exocrine secretion. The exocrine pancreas is also a site of one of the most serious cancer forms, the pancreatic ductal adenocarcinoma (PDAC). Here, we explore how the network of purinergic and adenosine receptors, as well as ecto-nucleotidases regulate normal pancreatic cells and various cells within the pancreatic tumor microenvironment. In particular, we focus on the P2X7 receptor, P2Y2 and P2Y12 receptors, as well as A2 receptors and ecto-nucleotidases CD39 and CD73. Recent studies indicate that targeting one or more of these candidates could present new therapeutic approaches to treat pancreatic cancer. In pancreatic cancer, as much as possible of normal pancreatic function should be preserved, and therefore physiology of purinergic signaling in pancreas needs to be considered.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/immunology
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Apyrase/genetics
- Apyrase/immunology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Clinical Trials as Topic
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy/methods
- Pancreas/drug effects
- Pancreas/immunology
- Pancreas/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Stellate Cells/drug effects
- Pancreatic Stellate Cells/immunology
- Pancreatic Stellate Cells/pathology
- Receptors, Adenosine A2/genetics
- Receptors, Adenosine A2/immunology
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/immunology
- Receptors, Purinergic P2Y12/genetics
- Receptors, Purinergic P2Y12/immunology
- Receptors, Purinergic P2Y2/genetics
- Receptors, Purinergic P2Y2/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (H.Y.); (L.M.); (G.D.)
| | | | | | | |
Collapse
|
16
|
Kusiak AA, Szopa MD, Jakubowska MA, Ferdek PE. Signaling in the Physiology and Pathophysiology of Pancreatic Stellate Cells - a Brief Review of Recent Advances. Front Physiol 2020; 11:78. [PMID: 32116785 PMCID: PMC7033654 DOI: 10.3389/fphys.2020.00078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in pancreatic stellate cells (PSCs) has been steadily growing over the past two decades due mainly to the central role these cells have in the desmoplastic reaction associated with diseases of the pancreas, such as pancreatitis or pancreatic cancer. In recent years, the scientific community has devoted substantial efforts to understanding the signaling pathways that govern PSC activation and interactions with neoplastic cells. This mini review aims to summarize some very recent findings on signaling in PSCs and highlight their impact to the field.
Collapse
Affiliation(s)
- Agnieszka A Kusiak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mateusz D Szopa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Pawel E Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|