1
|
Sanchez-Lopez JM, Juarez-Mancera MA, Bustamante B, Ruiz-Silvestre A, Espinosa M, Mendoza-Almanza G, Ceballos-Cancino G, Melendez-Zajgla J, Maldonado V, Lizarraga F. Decoding LINC00052 role in breast cancer by bioinformatic and experimental analyses. RNA Biol 2024; 21:1-11. [PMID: 38832821 PMCID: PMC11152094 DOI: 10.1080/15476286.2024.2355393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
LncRNA is a group of transcripts with a length exceeding 200 nucleotides that contribute to tumour development. Our research group found that LINC00052 expression was repressed during the formation of breast cancer (BC) multicellular spheroids. Intriguingly, LINC00052 precise role in BC remains uncertain. We explored LINC00052 expression in BC patients` RNA samples (TCGA) in silico, as well as in an in-house patient cohort, and inferred its cellular and molecular mechanisms. In vitro studies evaluated LINC00052 relevance in BC cells viability, cell cycle and DNA damage. Results. Bioinformatic RNAseq analysis of BC patients showed that LINC00052 is overexpressed in samples from all BC molecular subtypes. A similar LINC00052 expression pattern was observed in an in-house patient cohort. In addition, higher LINC00052 levels are related to better BC patient´s overall survival. Remarkably, MCF-7 and ZR-75-1 cells treated with estradiol showed increased LINC00052 expression compared to control, while these changes were not observed in MDA-MB-231 cells. In parallel, bioinformatic analyses indicated that LINC00052 influences DNA damage and cell cycle. MCF-7 cells with low LINC00052 levels exhibited increased cellular protection against DNA damage and diminished growth capacity. Furthermore, in cisplatin-resistant MCF-7 cells, LINC00052 expression was downregulated. Conclusion. This work shows that LINC00052 expression is associated with better BC patient survival. Remarkably, LINC00052 expression can be regulated by Estradiol. Additionally, assays suggest that LINC00052 could modulate MCF-7 cells growth and DNA damage repair. Overall, this study highlights the need for further research to unravel LINC00052 molecular mechanisms and potential clinical applications in BC.
Collapse
Affiliation(s)
- Jose Manuel Sanchez-Lopez
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | | | - Benjamin Bustamante
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Araceli Ruiz-Silvestre
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Magali Espinosa
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Gretel Mendoza-Almanza
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Gisela Ceballos-Cancino
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Vilma Maldonado
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| | - Floria Lizarraga
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México, Mexico
| |
Collapse
|
2
|
du Plessis TL, Abdulla N, Kaur M. The utility of 3D models to study cholesterol in cancer: Insights and future perspectives. Front Oncol 2023; 13:1156246. [PMID: 37077827 PMCID: PMC10106729 DOI: 10.3389/fonc.2023.1156246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Cholesterol remains a vital molecule required for life; however, increasing evidence exists implicating cholesterol in cancer development and progression. Numerous studies investigating the relationship between cholesterol and cancer in 2-dimensional (2D) culture settings exist, however these models display inherent limitations highlighting the incipient need to develop better models to study disease pathogenesis. Due to the multifaceted role cholesterol plays in the cell, researchers have begun utilizing 3-dimensional (3D) culture systems, namely, spheroids and organoids to recapitulate cellular architecture and function. This review aims to describe current studies exploring the relationship between cancer and cholesterol in a variety of cancer types using 3D culture systems. We briefly discuss cholesterol dyshomeostasis in cancer and introduce 3D in-vitro culture systems. Following this, we discuss studies performed in cancerous spheroid and organoid models that focused on cholesterol, highlighting the dynamic role cholesterol plays in various cancer types. Finally, we attempt to provide potential gaps in research that should be explored in this rapidly evolving field of study.
Collapse
|
3
|
The Role of Hypoxia-Associated Long Non-Coding RNAs in Breast Cancer. Cells 2022; 11:cells11101679. [PMID: 35626715 PMCID: PMC9139647 DOI: 10.3390/cells11101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in women worldwide. In the United States, even with earlier diagnosis and treatment improvements, the decline in mortality has stagnated in recent years. More research is needed to provide better diagnostic, prognostic, and therapeutic tools for these patients. Long non-coding RNAs are newly described molecules that have extensive roles in breast cancer. Emerging reports have shown that there is a strong link between these RNAs and the hypoxic response of breast cancer cells, which may be an important factor for enhanced tumoral progression. In this review, we summarize the role of hypoxia-associated lncRNAs in the classic cancer hallmarks, describing their effects on the upstream and downstream hypoxia signaling pathway and the use of them as diagnostic and prognostic tools.
Collapse
|
4
|
Gallegos-Martínez S, Lara-Mayorga IM, Samandari M, Mendoza-Buenrostro C, Flores-Garza BG, Reyes-Cortés L, Segoviano-Ramírez JC, Zhang YS, Trujillo de Santiago G, Alvarez MM. Culture of cancer spheroids and evaluation of anti-cancer drugs in 3D-printed miniaturized continuous stirred tank reactors (mCSTR). Biofabrication 2022; 14. [PMID: 35344936 DOI: 10.1088/1758-5090/ac61a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/28/2022] [Indexed: 11/11/2022]
Abstract
Cancer continues to be a leading cause of mortality in modern societies; therefore, improved and more reliable in vitro cancer models are needed to expedite fundamental research and anti-cancer drug development. Here, we describe the use of a miniaturized continuous stirred tank reactor (mCSTR) to first fabricate and mature cancer spheroids (i.e, derived from MCF7 cells, DU145 cells, and a mix of MCF7 cells and fibroblasts), and then to conduct anti-cancer drug assays under continuous perfusion. This 3 mL mCSTR features an off-center agitation system that enables homogeneous chaotic laminar mixing at low speeds to support cell aggregation. We incubated cell suspensions for 3 days in ultra-low-adherence (ULA) plates to allow formation of discoid cell aggregates (~600 µm in diameter). These cell aggregates were then transferred into mCSTRs and continuously fed with culture medium. We characterized the spheroid morphology and the expression of relevant tumor biomarkers at different maturation times for up to 4 weeks. The spheroids progressively increased in size during the first 5 to 6 days of culture to reach a steady diameter between 600 and 800 µm. In proof-of-principle experiments, we demonstrated the use of this mCSTR in anti-cancer drug testing. Three drugs commonly used in breast cancer treatment (doxorubicin, docetaxel, and paclitaxel) were probed at different concentrations in MCF7 derived spheroids. In these experiments, we evaluated cell viability, glucose consumption, spheroid morphology, lactate dehydrogenase activity, and the expression of genes associated with drug resistance (ABCB1 and ABCC1) and anti-apoptosis (Bcl2). We envision the use of this agitated system as a tumor-on-a-chip platform to expedite efficacy and safety testing of novel anti-cancer drugs and possibly in personalized medicine applications.
Collapse
Affiliation(s)
- Salvador Gallegos-Martínez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 sur, Col. Tecnológico, Monterrey, Monterrey, Nuevo Leon, 64849, MEXICO
| | - Itzel Montserrat Lara-Mayorga
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 sur, Col. Tecnológico, Monterrey, Monterrey, Nuevo Leon, 64849, MEXICO
| | - Mohamadmahdi Samandari
- University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut, 06032-1941, UNITED STATES
| | - Christian Mendoza-Buenrostro
- Centro de Innovación en Diseño y Tecnología, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 sur, Monterrey, Nuevo León, 64849, MEXICO
| | - Brenda Giselle Flores-Garza
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 sur, Col. Tecnológico, Monterrey, Monterrey, Nuevo Leon, 64849, MEXICO
| | - Luisa Reyes-Cortés
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 sur, Col. Tecnológico, Monterrey, Monterrey, Nuevo Leon, 64849, MEXICO
| | - Juan Carlos Segoviano-Ramírez
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Dr. José Eleuterio González (Gonzalitos), Mitras Centro, San Nicolas de los Garza, Nuevo Leon, 64460, MEXICO
| | - Yu Shrike Zhang
- Harvard Medical School, 65 Landsdowne Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Grissel Trujillo de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 sur, Col. Tecnológico, Monterrey, Monterrey, Nuevo Leon, 64849, MEXICO
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 sur, Col. Tecnológico, Monterrey, Monterrey, Nuevo Leon, 64849, MEXICO
| |
Collapse
|
5
|
García-Venzor A, Mandujano-Tinoco EA, Ruiz-Silvestre A, Sánchez JM, Lizarraga F, Zampedri C, Melendez-Zajgla J, Maldonado V. lncMat2B regulated by severe hypoxia induces cisplatin resistance by increasing DNA damage repair and tumor-initiating population in breast cancer cells. Carcinogenesis 2021; 41:1485-1497. [PMID: 32710610 DOI: 10.1093/carcin/bgaa078] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
Multicellular tumor spheroids (MCTSs) constitute a three-dimensional culture system that recapitulates the in vivo tumor microenvironment. Tumor cells cultured as MCTSs present antineoplastic resistance due to the effect of microenvironmental signals acting upon them. In this work, we evaluated the biological function of a new microenvironment-regulated long non-coding RNA, lncMat2B, in breast cancer. In MCTSs, the expression of lncMat2B presented an increase and a zonal heterogeneity, as it was expressed principally in quiescent cells of hypoxic regions of the MCTSs. As expected, functional assays supported the role of severe hypoxia in the regulation of lncMat2B. Moreover, gain- and loss-of-function assays using a transcriptional silencing CRISPR/Cas9 system and gBlock revealed that lncMAT2B regulates the tumor-initiating phenotype. Interestingly, lncMat2B is overexpressed in a cisplatin-resistant MCF-7 cell line, and its ectopic expression in wild type MCF-7 cells increased survival to cisplatin exposure by reducing DNA damage and reactive oxygen species accumulation. lncMAT2B is a possible link between severe hypoxia, tumor-initiating phenotype and drug resistance in breast cancer cells.
Collapse
Affiliation(s)
| | - Edna Ayerim Mandujano-Tinoco
- Basic Research, Instituto Nacional de Medicina Genómica, CDMX, México, México.,Tejido Conjuntivo, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, CDMX, México, México
| | | | - José Manuel Sánchez
- Basic Research, Instituto Nacional de Medicina Genómica, CDMX, México, México
| | - Floria Lizarraga
- Basic Research, Instituto Nacional de Medicina Genómica, CDMX, México, México
| | - Cecilia Zampedri
- Basic Research, Instituto Nacional de Medicina Genómica, CDMX, México, México
| | | | - Vilma Maldonado
- Basic Research, Instituto Nacional de Medicina Genómica, CDMX, México, México
| |
Collapse
|
6
|
Sanchez-Lopez JM, Mandujano-Tinoco EA, Garcia-Venzor A, Lozada-Rodriguez LF, Zampedri C, Uribe-Carvajal S, Melendez-Zajgla J, Maldonado V, Lizarraga F. Integrative analysis of transcriptional profile reveals LINC00052 as a suppressor of breast cancer cell migration. Cancer Biomark 2021; 30:365-379. [PMID: 33361583 DOI: 10.3233/cbm-200337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long-non-coding RNAs, a class of transcripts with lengths > 200 nt, play key roles in tumour progression. Previous reports revealed that LINC00052 (long intergenic non-coding RNA 00052) was strongly downregulated during breast cancer multicellular spheroids formation and suggested a role in cell migration and oxidative metabolism. OBJECTIVE To examine the function of LINC00052 in MCF-7 breast cancer cells. METHODS Loss-of-function studies were performed to evaluate LINC00052 role on MCF-7 breast cancer cells. Microarray expression assays were performed to determine genes and cellular functions modified after LINC00052 knockdown. Next, the impact of LINC00052 depletion on MCF-7 cell respiration and migration was evaluated. RESULTS 1,081 genes were differentially expressed upon LINC00052 inhibition. Gene set enrichment analysis, Gene Ontology and Key Pathway Advisor analysis showed that signalling networks related to cell migration and oxidative phosphorylation were enriched. However, whereas LINC00052 knockdown in MCF-7 cells revealed marginal difference in oxygen consumption rates when compared with control cells, LINC00052 inhibition enhanced cell migration in vitro and in vivo, as observed using a Zebrafish embryo xenotransplant model. CONCLUSION Our data show that LINC00052 modulates MCF-7 cell migration. Genome-wide microarray experiments suggest that cancer cell migration is affected by LINC00052 through cytoskeleton modulation and Notch/β-catenin/NF-κB signalling pathways.
Collapse
Affiliation(s)
- Jose Manuel Sanchez-Lopez
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Postgraduate Program in Biological Sciences, Faculty of Medicine, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edna Ayerim Mandujano-Tinoco
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación Luís Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alfredo Garcia-Venzor
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Cecilia Zampedri
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Vilma Maldonado
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Floria Lizarraga
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
7
|
Xiong D, Wang D, Chen Y. Role of the long non-coding RNA LINC00052 in tumors. Oncol Lett 2021; 21:316. [PMID: 33692848 PMCID: PMC7933760 DOI: 10.3892/ol.2021.12577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Long intergenic non-protein coding RNA 52 (LINC00052) is a non-coding RNA with >200 nucleotides in length, which exerts important effects on several physiological and pathological processes of the human body. Recent studies have demonstrated that LINC00052 plays key roles in the tumorigenesis, progression and metastasis of multiple types of human cancer, including hepatocellular carcinoma, breast cancer, colorectal cancer, cervical carcinoma and gastric cancer. However, the associations between LINC00052 and these tumors remain unclear. The present review summarizes the biological functions of LINC00052 during the pathogenic process of certain tumors, and discusses its potential therapeutic targets.
Collapse
Affiliation(s)
- Dongmei Xiong
- Early Childhood Health Research Innovation Team, Nursing School of Chongqing Medical and Pharmaceutical College, Chongqing 401331, P.R. China
| | - Dan Wang
- Clinical Laboratory, The People's Hospital of Rongchang, Chongqing 402460, P.R. China
| | - Yanmeng Chen
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
8
|
Saint-Sardos A, Sart S, Lippera K, Brient-Litzler E, Michelin S, Amselem G, Baroud CN. High-Throughput Measurements of Intra-Cellular and Secreted Cytokine from Single Spheroids Using Anchored Microfluidic Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002303. [PMID: 33185938 DOI: 10.1002/smll.202002303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
While many single-cell approaches have been developed to measure secretions from anchorage-independent cells, these protocols cannot be applied to adherent cells, especially when these cells require to be cultured in 3D formats. Here, a platform to measure secretions from individual spheroids of human mesenchymal stem cells, cultured within microfluidic droplets is introduced. The platform allows to quantify the secretions from hundreds of individual spheroids in each device, by using a secondary droplet to bring functionalized micro-beads in proximity to each spheroid. Vascular endothelial growth factor (VEGF-A) is measured on and a broad distribution of secretion levels within the population of spheroids is observed. The intra-cellular level of VEGF-A on each spheroid, measured through immuno-staining, correlates well with the extra-cellular measurement, indicating that the heterogeneities observed at the spheroid level result from variations at the intra-cellular level. Further, the molecular accumulation within the droplets is modeled and it is found that physical confinement is crucial for measurements of protein secretions. The model predicts that the time to achieve a measurement scales with droplet volume. These first measurements of secretions from individual spheroids provide several new biological and technological insights.
Collapse
Affiliation(s)
- Adrien Saint-Sardos
- LadHyX & Department of Mechanics, Ecole Polytechnique, CNRS-UMR 7646, Palaiseau, Cedex, 91128, France
- Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, Paris, 75015, France
| | - Sébastien Sart
- Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, Paris, 75015, France
| | - Kevin Lippera
- LadHyX & Department of Mechanics, Ecole Polytechnique, CNRS-UMR 7646, Palaiseau, Cedex, 91128, France
| | | | - Sébastien Michelin
- LadHyX & Department of Mechanics, Ecole Polytechnique, CNRS-UMR 7646, Palaiseau, Cedex, 91128, France
| | - Gabriel Amselem
- LadHyX & Department of Mechanics, Ecole Polytechnique, CNRS-UMR 7646, Palaiseau, Cedex, 91128, France
| | - Charles N Baroud
- LadHyX & Department of Mechanics, Ecole Polytechnique, CNRS-UMR 7646, Palaiseau, Cedex, 91128, France
- Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, Paris, 75015, France
| |
Collapse
|