1
|
Biojout T, Bergot E, Bernay B, Levallet G, Levallet J. NDR2 kinase: A review of its physiological role and involvement in carcinogenesis. Int J Biol Macromol 2025; 311:143656. [PMID: 40311964 DOI: 10.1016/j.ijbiomac.2025.143656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/04/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
The Hippo kinase, NDR2, plays a key role in the natural history of several human cancers, particularly lung cancer, by regulating processes such as proliferation, apoptosis, migration, invasion, vesicular trafficking, autophagy, ciliogenesis and immune response. To examine the specificity of NDR2's action, interaction and function in physiological or tumoral contexts, we first focus on the structural differences in the amino-acid sequence between NDR1 and NDR2. We then establish a correlation between these NDR1/2 differences and specific post-translational regulation, as well as the distinct action, interactions, and functions of NDR2 in physiological or tumoral paradigms, such as lung cancer. Furthermore, the full set of NDR2 partners and/or substrates remains to be identified. Given that it is hypothesized that NDR2 and its partners may offer new perspectives for anticancer therapies, we emphasize potential clustering or functional enrichment networks among the NDR2-specific interactants. Additionally, we provide an unpublished proteomic comparison of the NDR1 versus NDR2 interactome, focusing on human bronchial epithelial cells (HBEC-3), lung adenocarcinoma cells (H2030), and their brain metastasis-derived counterparts (H2030-BrM3). In conclusion, this study underscores the pivotal role of NDR2 in cancer progression, particularly lung cancer, and helps to better understand their specific functions and interactions in both normal and tumor contexts. The identification of NDR2 partners and substrates remains essential, with the potential to open new avenues for anticancer therapies.
Collapse
Affiliation(s)
- Tiphaine Biojout
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France
| | - Emmanuel Bergot
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France; Centre Hospitalier Universitaire de Caen Normandie, Département de Pneumologie et d'Oncologie thoracique, F-14000 Caen, France
| | - Benoit Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen, cedex 5, France
| | - Guénaëlle Levallet
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France; Centre Hospitalier Universitaire de Caen Normandie, Département de Pathologie, F-14000 Caen, France.
| | - Jérôme Levallet
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France
| |
Collapse
|
2
|
Jiang M, Zhu Z, Zhou Z, Yan Z, Huang K, Jiang R, Fan X, Jieensi M, Pang L, Wang Y, Sun X. A temperature-ultrasound sensitive nanoparticle delivery system for exploring central neuroinflammation mechanism in stroke-heart syndrome. J Nanobiotechnology 2024; 22:681. [PMID: 39506743 PMCID: PMC11542249 DOI: 10.1186/s12951-024-02961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Cardiovascular events secondary to stroke-collectively classified as stroke-heart syndrome-greatly impair the patient's prognosis, however its underlying mechanism has yet to be determined. To investigate the mechanism of central neuroinflammation and its effects on stroke-heart syndrome, a temperature-ultrasound responsive brain-targeted drug delivery system, DATS/MION-LPE, was synthesized to specifically study neuroinflammation in the mouse middle cerebral artery occlusion (MCAO) model. RESULTS The specific polymer of DATS/MION-LPE can close the nanoparticle pores at 37 °C, restricting drug release in the circulation. After the nanoparticles were targeted to brains, the polymer can be cleaved under external ultrasound irradiation, reopening the nanoparticle pores and allowing drug release, therefore directly managing the neuroinflammation. After a stroke, a significant cerebral inflammation occurred, with elevated IL-1β and pyrin domain-containing 3 (NLRP3) inflammasome. Accordingly, significantly increased histone deacetylase 6 (HDAC6) and decreased sirtuin 1 (SIRT1) were observed. An antagonistic relationship between HDAC6 and SIRT1 was found, which can jointly regulate the cerebral NLRP3 expression. The systemic IL-1β and ATP levels were increased after the stroke, accompanied by a significant heart injury including contractile dysfunction, elevated IL-1β levels, and oxidative stress. Meanwhile, neuroinflammation can trigger sympathetic nervous overexcitation with associated heart damage. DATS/MION-LPE can targetedly effect on ischemic brain, exhibiting cerebral and cardiac protective effects including downregulated cerebral NLRP3 and HDAC6 expressions, upregulated SIRT1 expressions in brain, reduced IL-1β and ATP in circulation, and alleviated cardiac impairment. CONCLUSION This study introduced the key role of neuroinflammation in stroke-heart syndrome and first investigated the crucial HDAC6/SIRT1-NLRP3 circuit in this process. Heart injury secondary to stroke is mediated by neuroinflammation induced systemic inflammatory responses and sympathoexcitation. DATS/MION-LPE is a unique tool and effective therapeutic agent, which provides new insights into combinational heart and cardiac protection.
Collapse
Affiliation(s)
- Mingzhou Jiang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Rd, Shanghai, 200040, China
| | - Zhidong Zhu
- Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Ziyu Zhou
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- School of Pharmacy, East China Normal University, Shanghai, 200062, China
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kai Huang
- Department of Cardiovascular Surgery, Changhai Hospital of Naval Medical University, Shanghai, China
| | - Rongrong Jiang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Rd, Shanghai, 200040, China
| | - Xi Fan
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Rd, Shanghai, 200040, China
| | - Milayi Jieensi
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Rd, Shanghai, 200040, China
| | - Liewen Pang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Rd, Shanghai, 200040, China.
| | - Yiqing Wang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Rd, Shanghai, 200040, China.
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Rd, Shanghai, 200040, China.
| |
Collapse
|
3
|
Cheng Y, Hou W, Fang H, Yan Y, Lu Y, Meng T, Ma C, Liu Q, Zhou Z, Li H, Li H, Xiao N. SENP2-NDR2-p21 axis modulates lung cancer cell growth. Eur J Pharmacol 2024; 978:176761. [PMID: 38908669 DOI: 10.1016/j.ejphar.2024.176761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Sentrin/small ubiquitin-like modifier (SUMO)-specific proteases (SENPs) perform pivotal roles in SUMO maturation and recycling, which modulate the balance of SUMOylation/de-SUMOylation and spatiotemporal functions of SUMOylation targets. The malfunction of SENPs often results in cellular dysfunction and various diseases. However, studies rarely investigated the correlation between SENP2 and lung cancer. This study revealed that SENP2 is a required contributor to lung cancer-cell growth and targets nuclear Dbf2-related 2 (NDR2, also known as serine/threonine kinase 38L or STK38L) for de-SUMOylation, which improves NDR2 kinase activity. This condition leads to the instability of downstream target p21 in accelerating the G1/S cell cycle transition and suggests SENP2 as a promising therapeutic target for lung cancer in the future. Specifically, astragaloside IV, an active ingredient of Jinfukang Oral Liquid (JOL, a clinical combination antilung cancer drug approved by the National Food and Drug Administration (FDA) of China), can repress lung cancer-cell growth via the SENP2-NDR2-p21 axis, which provides new insights into the molecular mechanism of JOL for lung cancer treatment.
Collapse
Affiliation(s)
- Yixuan Cheng
- Institute of Traditional Chinese Medicine Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanxin Hou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinjie Yan
- Department of Medical Affairs, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Lu
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian Meng
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunshuang Ma
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qinghai Liu
- Department of Performance Management, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyi Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Oncology, Tianshan Hospital of Traditional Chinese Medicine in Changning District, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fujian, China.
| | - Hegen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ning Xiao
- Institute of Traditional Chinese Medicine Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Lei YH, Tang Q, Ni Y, Li CH, Luo P, Huang K, Chen X, Zhu YX, Wang NY. Design, synthesis and biological evaluation of new RNF126-based p300/CBP degraders. Bioorg Chem 2024; 148:107427. [PMID: 38728911 DOI: 10.1016/j.bioorg.2024.107427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Histone acetyltransferase CREB-binding protein (CBP) and its homologous protein p300 are key transcriptional activators that can activate oncogene transcription, which present promising targets for cancer therapy. Here, we designed and synthesized a series of p300/CBP targeted low molecular weight PROTACs by assembling the covalent ligand of RNF126 E3 ubiquitin ligase and the bromodomain ligand of the p300/CBP. The optimal molecule A8 could effectively degrade p300 and CBP through the ubiquitin-proteasome system in time- and concentration-dependent manners, with half-maximal degradation (DC50) concentrations of 208.35/454.35 nM and 82.24/79.45 nM for p300/CBP in MV4-11 and Molm13 cell lines after 72 h of treatment. And the degradation of p300/CBP by A8 is dependent on the ubiquitin-proteasome pathway and its simultaneous interactions with the target proteins and RNF126. A8 exhibits good antiproliferative activity in a series of p300/CBP-dependent cancer cells. It could transcriptionally inhibit the expression of c-Myc, induce cell cycle arrest in the G0/G1 phase and apoptosis in MV4-11 cells. This study thus provided us a new chemotype for the development of drug-like PROTACs targeting p300/CBP, which is expected to be applied in cancer therapy.
Collapse
Affiliation(s)
- Yan-Hua Lei
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Qing Tang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yang Ni
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Cai-Hua Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Peng Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Kun Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yong-Xia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology, Chengdu, China.
| | - Ning-Yu Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Jonischkies K, del Angel M, Demiray YE, Loaiza Zambrano A, Stork O. The NDR family of kinases: essential regulators of aging. Front Mol Neurosci 2024; 17:1371086. [PMID: 38803357 PMCID: PMC11129689 DOI: 10.3389/fnmol.2024.1371086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Aging is defined as a progressive decline of cognitive and physiological functions over lifetime. Since the definition of the nine hallmarks of aging in 2013 by López-Otin, numerous studies have attempted to identify the main regulators and contributors in the aging process. One interesting group of proteins whose participation has been implicated in several aging hallmarks are the nuclear DBF2-related (NDR) family of serine-threonine AGC kinases. They are one of the core components of the Hippo signaling pathway and include NDR1, NDR2, LATS1 and LATS2 in mammals, along with its highly conserved metazoan orthologs; Trc in Drosophila melanogaster, SAX-1 in Caenorhabditis elegans, CBK1, DBF20 in Saccharomyces cerevisiae and orb6 in Saccharomyces pombe. These kinases have been independently linked to the regulation of widely diverse cellular processes disrupted during aging such as the cell cycle progression, transcription, intercellular communication, nutrient homeostasis, autophagy, apoptosis, and stem cell differentiation. However, a comprehensive overview of the state-of-the-art knowledge regarding the post-translational modifications of and by NDR kinases in aging has not been conducted. In this review, we summarize the current understanding of the NDR family of kinases, focusing on their relevance to various aging hallmarks, and emphasize the growing body of evidence that suggests NDR kinases are essential regulators of aging across species.
Collapse
Affiliation(s)
- Kevin Jonischkies
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miguel del Angel
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Allison Loaiza Zambrano
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
6
|
Xu L, Yan X, Wang J, Zhao Y, Liu Q, Fu J, Shi X, Su J. The Roles of Histone Deacetylases in the Regulation of Ovarian Cancer Metastasis. Int J Mol Sci 2023; 24:15066. [PMID: 37894746 PMCID: PMC10606123 DOI: 10.3390/ijms242015066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, and metastasis is the major cause of death in patients with ovarian cancer, which is regulated by the coordinated interplay of genetic and epigenetic mechanisms. Histone deacetylases (HDACs) are enzymes that can catalyze the deacetylation of histone and some non-histone proteins and that are involved in the regulation of a variety of biological processes via the regulation of gene transcription and the functions of non-histone proteins such as transcription factors and enzymes. Aberrant expressions of HDACs are common in ovarian cancer. Many studies have found that HDACs are involved in regulating a variety of events associated with ovarian cancer metastasis, including cell migration, invasion, and the epithelial-mesenchymal transformation. Herein, we provide a brief overview of ovarian cancer metastasis and the dysregulated expression of HDACs in ovarian cancer. In addition, we discuss the roles of HDACs in the regulation of ovarian cancer metastasis. Finally, we discuss the development of compounds that target HDACs and highlight their importance in the future of ovarian cancer therapy.
Collapse
Affiliation(s)
- Long Xu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jian Wang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jiaying Fu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Xinyi Shi
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| |
Collapse
|
7
|
Hai R, Yang D, Zheng F, Wang W, Han X, Bode AM, Luo X. The emerging roles of HDACs and their therapeutic implications in cancer. Eur J Pharmacol 2022; 931:175216. [PMID: 35988787 DOI: 10.1016/j.ejphar.2022.175216] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 12/25/2022]
Abstract
Deregulation of protein post-translational modifications is intensively involved in the etiology of diseases, including degenerative diseases, inflammatory injuries, and cancers. Acetylation is one of the most common post-translational modifications of proteins, and the acetylation levels are controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs). HATs loosen the chromatin structure by neutralizing the positive charge of lysine residues of histones; whereas HDACs deacetylate certain histones, thus inhibiting gene transcription. Compared with HATs, HDACs have been more intensively studied, particularly regarding their clinical significance. HDACs extensively participate in the regulation of proliferation, migration, angiogenesis, immune escape, and therapeutic resistance of cancer cells, thus emerging as critical targets for clinical cancer therapy. Compared to HATs, inhibitors of HDAC have been clinically used for cancer treatment. Here, we enumerate and integratethe mechanisms of HDAC family members in tumorigenesis and cancer progression, and address the new and exciting therapeutic implications of single or combined HDAC inhibitor (HDACi) treatment.
Collapse
Affiliation(s)
- Rihan Hai
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Deyi Yang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Feifei Zheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Weiqin Wang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xing Han
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
8
|
Chen J, Liu Q, Zeng L, Huang X. Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control. Front Microbiol 2020; 11:574736. [PMID: 33133044 PMCID: PMC7579399 DOI: 10.3389/fmicb.2020.574736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation is a universal post-translational modification that fine-tunes the major cellular processes of many life forms. Although the mechanisms regulating protein acetylation have not been fully elucidated, this modification is finely tuned by both enzymatic and non-enzymatic mechanisms. Protein deacetylation is the reverse process of acetylation and is mediated by deacetylases. Together, protein acetylation and deacetylation constitute a reversible regulatory protein acetylation network. The recent application of mass spectrometry-based proteomics has led to accumulating evidence indicating that reversible protein acetylation may be related to fungal virulence because a substantial amount of virulence factors are acetylated. Additionally, the relationship between protein acetylation/deacetylation and fungal drug resistance has also been proven and the potential of deacetylase inhibitors as an anti-infective treatment has attracted attention. This review aimed to summarize the research progress in understanding fungal protein acetylation/deacetylation and discuss the mechanism of its mediation in fungal virulence, providing novel targets for the treatment of fungal infection.
Collapse
Affiliation(s)
- Junzhu Chen
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|