1
|
Yan Z, He L, Yuan J, Niu Y, Shuai S, Luo S, Du C, Rao H. The splicing factor SRRM2 modulates two S6K kinases to promote colorectal cancer growth. Oncogene 2025; 44:1284-1299. [PMID: 39956864 DOI: 10.1038/s41388-025-03307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway plays a critical role in cell growth and metabolic homeostasis. The ribosomal protein S6 kinases S6K1 and S6K2 are the major effectors of the mTOR pathway key to translation efficiency, but the underlying regulatory mechanisms remain largely unclear. In this study, we searched for mTOR regulators and found that the splicing factor SRRM2 modulates the levels of S6K1 and S6K2, thereby activating the mTOR-S6K pathway. Interestingly, SRRM2 facilitates the expression of S6K2 by modulating alternative splicing, and enhances the stability of the S6K1 protein by regulating the E3 ubiquitin ligase WWP2. Moreover, SRRM2 is highly expressed in colorectal cancer (CRC) tissues and is associated with a poor prognosis. SRRM2 promotes CRC growth in vitro and in vivo. Combined, these data reveal an oncogenic role of SRRM2 in CRC through activating the mTOR-S6K pathway by two different approaches, further suggesting SRRM2 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhengwei Yan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Luling He
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiawei Yuan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yulong Niu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shiwen Luo
- School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Changzheng Du
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Beijing Tsinghua Changgung Hospital & Tsinghua University School of Medicine, 168 Litang Road, Changping District, Beijing, 102218, PR China
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Mehmetoğlu Gürbüz T, Oral EN, Dağoğlu Sakin RN, Karaman Ş, Durak Ş, Aksoyer Sezgin SB, Keskin M, Çelik F, Zeybek ŞÜ. Exon Sequence Analysis of the ATG5, ATG12, ATG9B Genes in Colorectal Cancer Patients During Radiotherapy. Indian J Clin Biochem 2025; 40:263-273. [PMID: 40123635 PMCID: PMC11928699 DOI: 10.1007/s12291-023-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/15/2023] [Indexed: 03/25/2025]
Abstract
Radiotherapy (RT) which is a treatment regime for cancer patients may cause genetic instability and side effects. Etiological associations exist amongst autophagy-related gene (ATG) mutation and cancer. RT increases the rate of autophagy previously proven in vitro. The aforementioned background diverted us to conduct exon mutation analysis for ATG5, ATG12, and ATG9B genes of colorectal cancer patients who were receiving neoadjuvant RT. Peripheral blood DNA from different time points (before/middle/after RT) of the same patients was isolated and most tandem repeat-containing exons of ATG5, ATG12, and ATG9B were polymerase chain reaction-amplified and examined for mutations by Sanger sequencing. CA19-9/CEA (Tumor marker of colorectal cancer/Carcinoembryonic Antigen) serum levels were retrieved from the clinic. No exon variations detected for ATG5 and ATG12 genes. However, 4 patients (17.4%) showed frameshift mutation for ATG9B gene. Exon variation analysis of 2 (8.7%) patients resulted in GGG deletion at 8G mononucleotide tandem repeat region of ATG9B. Assigning patients as before RT and after RT, CA19-9 levels in ATG9B (Mutation) patients were higher compared to ATG9B (Wild Type) patients. ATG9B is highly likely to mutate during RT and ATG9B mutation correlates to higher CEA and CA19-9 levels and patients show poor prognosis. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-023-01177-6.
Collapse
Affiliation(s)
- Tuğba Mehmetoğlu Gürbüz
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Topkapi, Gureba Hospital Street, Number: 69, 34093 Fatih/Istanbul, Turkey
| | - Ethem Nezih Oral
- Institute of Oncology, Department of Radiation Oncology, Istanbul University, Istanbul, Turkey
| | | | - Şule Karaman
- Institute of Oncology, Diagnostic Treatment and Care Services, Istanbul University, Istanbul, Turkey
| | - Şermin Durak
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Topkapi, Gureba Hospital Street, Number: 69, 34093 Fatih/Istanbul, Turkey
| | | | - Metin Keskin
- Istanbul Faculty of Medicine, Department of General Surgery, Istanbul, Turkey
| | - Faruk Çelik
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Topkapi, Gureba Hospital Street, Number: 69, 34093 Fatih/Istanbul, Turkey
| | - Ş. Ümit Zeybek
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Topkapi, Gureba Hospital Street, Number: 69, 34093 Fatih/Istanbul, Turkey
| |
Collapse
|
3
|
Yu L, Zhang Y, Xue L, Liu F, Jing R, Luo J. EnsembleDL-ATG: Identifying autophagy proteins by integrating their sequence and evolutionary information using an ensemble deep learning framework. Comput Struct Biotechnol J 2023; 21:4836-4848. [PMID: 37854634 PMCID: PMC10579870 DOI: 10.1016/j.csbj.2023.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Autophagy is a primary mechanism for maintaining cellular homeostasis. The synergistic actions of autophagy-related (ATG) proteins strictly regulate the whole autophagic process. Therefore, accurate identification of ATGs is a first and critical step to reveal the molecular mechanism underlying the regulation of autophagy. Current computational methods can predict ATGs from primary protein sequences, but owing to the limitations of algorithms, significant room for improvement still exists. In this research, we propose EnsembleDL-ATG, an ensemble deep learning framework that aggregates multiple deep learning models to predict ATGs from protein sequence and evolutionary information. We first evaluated the performance of individual networks for various feature descriptors to identify the most promising models. Then, we explored all possible combinations of independent models to select the most effective ensemble architecture. The final framework was built and maintained by an organization of four different deep learning models. Experimental results show that our proposed method achieves a prediction accuracy of 94.5 % and MCC of 0.890, which are nearly 4 % and 0.08 higher than ATGPred-FL, respectively. Overall, EnsembleDL-ATG is the first ATG machine learning predictor based on ensemble deep learning. The benchmark data and code utilized in this study can be accessed for free at https://github.com/jingry/autoBioSeqpy/tree/2.0/examples/EnsembleDL-ATG.
Collapse
Affiliation(s)
- Lezheng Yu
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, Guizhou, China
- Basic Medical College, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yonglin Zhang
- Department of Pharmacy, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Li Xue
- School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Fengjuan Liu
- School of Geography and Resources, Guizhou Education University, Guiyang 550018, Guizhou, China
| | - Runyu Jing
- School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jiesi Luo
- Basic Medical College, Southwest Medical University, Luzhou 646000, Sichuan, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
4
|
Raffeiner M, Zhu S, González-Fuente M, Üstün S. Interplay between autophagy and proteasome during protein turnover. TRENDS IN PLANT SCIENCE 2023; 28:698-714. [PMID: 36801193 DOI: 10.1016/j.tplants.2023.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
Protein homeostasis is epitomized by an equilibrium between protein biosynthesis and degradation: the 'life and death' of proteins. Approximately one-third of newly synthesized proteins are degraded. As such, protein turnover is required to maintain cellular integrity and survival. Autophagy and the ubiquitin-proteasome system (UPS) are the two principal degradation pathways in eukaryotes. Both pathways orchestrate many cellular processes during development and upon environmental stimuli. Ubiquitination of degradation targets is used as a 'death' signal by both processes. Recent findings revealed a direct functional link between both pathways. Here, we summarize key findings in the field of protein homeostasis, with an emphasis on the newly revealed crosstalk between both degradation machineries and how it is decided which pathway facilitates target degradation.
Collapse
Affiliation(s)
- Margot Raffeiner
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Shanshuo Zhu
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Manuel González-Fuente
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Suayib Üstün
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany.
| |
Collapse
|
5
|
Xiong Q, Feng R, Fischer S, Karow M, Stumpf M, Meßling S, Nitz L, Müller S, Clemen CS, Song N, Li P, Wu C, Eichinger L. Proteasomes of Autophagy-Deficient Cells Exhibit Alterations in Regulatory Proteins and a Marked Reduction in Activity. Cells 2023; 12:1514. [PMID: 37296637 PMCID: PMC10252828 DOI: 10.3390/cells12111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Autophagy and the ubiquitin proteasome system are the two major processes for the clearance and recycling of proteins and organelles in eukaryotic cells. Evidence is accumulating that there is extensive crosstalk between the two pathways, but the underlying mechanisms are still unclear. We previously found that autophagy 9 (ATG9) and 16 (ATG16) proteins are crucial for full proteasomal activity in the unicellular amoeba Dictyostelium discoideum. In comparison to AX2 wild-type cells, ATG9-and ATG16- cells displayed a 60%, and ATG9-/16- cells a 90%, decrease in proteasomal activity. Mutant cells also showed a significant increase in poly-ubiquitinated proteins and contained large ubiquitin-positive protein aggregates. Here, we focus on possible reasons for these results. Reanalysis of published tandem mass tag-based quantitative proteomic results of AX2, ATG9-, ATG16-, and ATG9-/16- cells revealed no change in the abundance of proteasomal subunits. To identify possible differences in proteasome-associated proteins, we generated AX2 wild-type and ATG16- cells expressing the 20S proteasomal subunit PSMA4 as GFP-tagged fusion protein, and performed co-immunoprecipitation experiments followed by mass spectrometric analysis. The results revealed no significant differences in the abundance of proteasomes between the two strains. However, we found enrichment as well as depletion of proteasomal regulators and differences in the ubiquitination of associated proteins for ATG16-, as compared to AX2 cells. Recently, proteaphagy has been described as a means to replace non-functional proteasomes. We propose that autophagy-deficient D. discoideum mutants suffer from inefficient proteaphagy, which results in the accumulation of modified, less-active, and also of inactive, proteasomes. As a consequence, these cells exhibit a dramatic decrease in proteasomal activity and deranged protein homeostasis.
Collapse
Affiliation(s)
- Qiuhong Xiong
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Rong Feng
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Sarah Fischer
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Malte Karow
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Maria Stumpf
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Susanne Meßling
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Leonie Nitz
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Stefan Müller
- CECAD Proteomics Facility, Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Christoph S. Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ning Song
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Ping Li
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Changxin Wu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Ludwig Eichinger
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| |
Collapse
|
6
|
Nondegradable ubiquitinated ATG9A organizes Golgi integrity and dynamics upon stresses. Cell Rep 2022; 40:111195. [PMID: 35977480 DOI: 10.1016/j.celrep.2022.111195] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/06/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
ATG9A is a highly conserved membrane protein required for autophagy initiation. It is trafficked from the trans-Golgi network (TGN) to the phagophore to act as a membrane source for autophagosome expansion. Here, we show that ATG9A is not just a passenger protein in the TGN but rather works in concert with GRASP55, a stacking factor for Golgi structure, to organize Golgi dynamics and integrity. Upon heat stress, the E3 ubiquitin ligase MARCH9 is promoted to ubiquitinate ATG9A in the form of K63 conjugation, and the nondegradable ubiquitinated ATG9A disperses from the Golgi apparatus to the cytoplasm more intensely, accompanied by inhibiting GRASP55 oligomerization, further resulting in Golgi fragmentation. Knockout of ATG9A or MARCH9 largely prevents Golgi fragmentation and protects Golgi functions under heat and other Golgi stresses. Our results reveal a noncanonical function of ATG9A for Golgi dynamics and suggest the pathway for sensing Golgi stress via the MARCH9/ATG9A axis.
Collapse
|
7
|
Degradation Mechanism of Autophagy-Related Proteins and Research Progress. Int J Mol Sci 2022; 23:ijms23137301. [PMID: 35806307 PMCID: PMC9266641 DOI: 10.3390/ijms23137301] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
In all eukaryotes, autophagy is the main pathway for nutrient recycling, which encapsulates parts of the cytoplasm and organelles in double-membrane vesicles, and then fuses with lysosomes/vacuoles to degrade them. Autophagy is a highly dynamic and relatively complex process influenced by multiple factors. Under normal growth conditions, it is maintained at basal levels. However, when plants are subjected to biotic and abiotic stresses, such as pathogens, drought, waterlogging, nutrient deficiencies, etc., autophagy is activated to help cells to survive under stress conditions. At present, the regulation of autophagy is mainly reflected in hormones, second messengers, post-transcriptional regulation, and protein post-translational modification. In recent years, the degradation mechanism of autophagy-related proteins has attracted much attention. In this review, we have summarized how autophagy-related proteins are degraded in yeast, animals, and plants, which will help us to have a more comprehensive and systematic understanding of the regulation mechanisms of autophagy. Moreover, research progress on the degradation of autophagy-related proteins in plants has been discussed.
Collapse
|
8
|
Oliveira-Mendonça LS, Mendes ÉA, Castro JO, Silva MM, Santos AG, Kaneto CM, Dias SO, Allaman IB, Vannier-Santos MA, Silva JF, Augusto DG, Anjos DOD, Santos NAS, Lima KP, Horta MF, Albuquerque GR, Costa MGC, Silva-Jardim I, Santos JLD. Trichoderma stromaticum spores induce autophagy and downregulate inflammatory mediators in human peripheral blood-derived macrophages. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100145. [PMID: 35909603 PMCID: PMC9325901 DOI: 10.1016/j.crmicr.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
T. stromaticum biocontrol agent induces autophagy, up-regulating autophagy-related genes T. stromaticum modulates expression of micro RNAs that control imune response T. stromaticum dow-nregulates expression of TLR2, TLR4, CLEC7A, NLRP3, IL-10, IL1β and IL18 T. stromaticum modulates ROS production
Trichoderma spp. are usually considered safe and normally used as biocontrol and biofertilization. Safety for human health is evaluated by several tests that detect various effects such as allergenicity, toxicity, infectivity, and pathogenicity. However, they do not evaluate the effects of the agent upon the immune system. The aim of this study was to investigate the interaction between T. stromaticum spores and mammalian cells to assess the immunomodulatory potential of the spores of this fungus. First, mouse macrophage cell line J774 and human macrophages were exposed to fungal spores and analyzed for structural features, through scanning and transmission electron microscopy. Then, various analysis were performed in human macrophages as to their effect in some functional and molecular aspects of the immune system through immunocytochemistry, flow cytometry and gene expression assays. We demonstrated that T. stromaticum spores induces autophagy and autophagy-related genes (ATGs) and downmodulate inflammatory mediators, including ROS, NLRP3, the cytokines IL-1β, IL-18, IL-12 and IL-10, as well as TLR2, TLR4, miR-146b and miR-155, which may lead to an augmented susceptibility to pathogens. Our study shows the extension of damages the biofungicide Tricovab® can cause in the innate immune response. Further studies are necessary to elucidate other innate and adaptive immune responses and, consequently, the safety of this fungus when in contact with humans.
Collapse
|
9
|
Feng Y, Ariosa AR, Yang Y, Hu Z, Dengjel J, Klionsky DJ. Downregulation of autophagy by Met30-mediated Atg9 ubiquitination. Proc Natl Acad Sci U S A 2021; 118:e2005539118. [PMID: 33443148 PMCID: PMC7817162 DOI: 10.1073/pnas.2005539118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Macroautophagy/autophagy is a highly conserved eukaryotic molecular process that facilitates the recycling of superfluous cytoplasmic materials, damaged organelles, and invading pathogens, resulting in proper cellular homeostasis and survival during stress conditions. Autophagy is stringently regulated at multiple stages, including control at transcriptional, translational, and posttranslational levels. In this work, we identified a mechanism by which regulation of autophagy is achieved through the posttranslational modification of Atg9. Here, we show that, in order to limit autophagy to a low, basal level during normal conditions, Atg9 is ubiquitinated and subsequently targeted for degradation in a proteasome-dependent manner through the action of the E3 ligase Met30. When cells require increased autophagy flux to respond to nutrient deprivation, the proteolysis of Atg9 is significantly reduced. Overall, this work reveals an additional layer of mechanistic regulation that allows cells to further maintain appropriate levels of autophagy and to rapidly induce this process in response to stress.
Collapse
Affiliation(s)
- Yuchen Feng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Aileen R Ariosa
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Ying Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109;
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
10
|
Camougrand N, Vigié P, Gonzalez C, Manon S, Bhatia-Kiššová I. The yeast mitophagy receptor Atg32 is ubiquitinated and degraded by the proteasome. PLoS One 2020; 15:e0241576. [PMID: 33362225 PMCID: PMC7757876 DOI: 10.1371/journal.pone.0241576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
Mitophagy, the process that degrades mitochondria selectively through autophagy, is involved in the quality control of mitochondria in cells grown under respiratory conditions. In yeast, the presence of the Atg32 protein on the outer mitochondrial membrane allows for the recognition and targeting of superfluous or damaged mitochondria for degradation. Post-translational modifications such as phosphorylation are crucial for the execution of mitophagy. In our study we monitor the stability of Atg32 protein in the yeast S. cerevisiae and show that Atg32 is degraded under normal growth conditions, upon starvation or rapamycin treatment. The Atg32 turnover can be prevented by inhibition of the proteasome activity, suggesting that Atg32 is also ubiquitinated. Mass spectrometry analysis of purified Atg32 protein revealed that at least lysine residue in position 282 is ubiquitinated. Interestingly, the replacement of lysine 282 with alanine impaired Atg32 degradation only partially in the course of cell growth, suggesting that additional lysine residues on Atg32 might also be ubiquitinated. Our results provide the foundation to further elucidate the physiological significance of Atg32 turnover and the interplay between mitophagy and the proteasome.
Collapse
Affiliation(s)
- Nadine Camougrand
- CNRS and Université de Bordeaux, IBGC, UMR5095, Bordeaux, France
- * E-mail:
| | - Pierre Vigié
- CNRS and Université de Bordeaux, IBGC, UMR5095, Bordeaux, France
| | - Cécile Gonzalez
- CNRS and Université de Bordeaux, IBGC, UMR5095, Bordeaux, France
| | - Stéphen Manon
- CNRS and Université de Bordeaux, IBGC, UMR5095, Bordeaux, France
| | - Ingrid Bhatia-Kiššová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
11
|
Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8014. [PMID: 33126501 PMCID: PMC7662794 DOI: 10.3390/ijms21218014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
12
|
Luo F, Sandhu AF, Rungratanawanich W, Williams GE, Akbar M, Zhou S, Song BJ, Wang X. Melatonin and Autophagy in Aging-Related Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197174. [PMID: 32998479 PMCID: PMC7584015 DOI: 10.3390/ijms21197174] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
With aging, the nervous system gradually undergoes degeneration. Increased oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and cell death are considered to be common pathophysiological mechanisms of various neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), organophosphate-induced delayed neuropathy (OPIDN), and amyotrophic lateral sclerosis (ALS). Autophagy is a cellular basic metabolic process that degrades the aggregated or misfolded proteins and abnormal organelles in cells. The abnormal regulation of neuronal autophagy is accompanied by the accumulation and deposition of irregular proteins, leading to changes in neuron homeostasis and neurodegeneration. Autophagy exhibits both a protective mechanism and a damage pathway related to programmed cell death. Because of its "double-edged sword", autophagy plays an important role in neurological damage and NDDs including AD, PD, HD, OPIDN, and ALS. Melatonin is a neuroendocrine hormone mainly synthesized in the pineal gland and exhibits a wide range of biological functions, such as sleep control, regulating circadian rhythm, immune enhancement, metabolism regulation, antioxidant, anti-aging, and anti-tumor effects. It can prevent cell death, reduce inflammation, block calcium channels, etc. In this review, we briefly discuss the neuroprotective role of melatonin against various NDDs via regulating autophagy, which could be a new field for future translational research and clinical studies to discover preventive or therapeutic agents for many NDDs.
Collapse
Affiliation(s)
- Fang Luo
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Aaron F. Sandhu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - George E. Williams
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Shuanhu Zhou
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
- Correspondence:
| |
Collapse
|
13
|
Wang CY, Lin TA, Ho MY, Yeh JK, Tsai ML, Hung KC, Hsieh IC, Wen MS. Regulation of autophagy in leukocytes through RNA N 6-adenosine methylation in chronic kidney disease patients. Biochem Biophys Res Commun 2020; 527:953-959. [PMID: 32439179 DOI: 10.1016/j.bbrc.2020.04.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
Patients with chronic kidney diseases have multiple cellular dysfunctions leading to increased atherosclerosis, impaired immunity, and disturbed metabolism. However, it is unclear what is the fundamental signaling served as a marker or as a mediator for the dysregulated function in their leukocytes or tissues. Here we hypothesized that the N6-Methyladenosine (m6A) modification of the RNA in the leukocytes is responsible for the cellular dysfunction in chronic kidney diseases. Patients with chronic kidney diseases had significantly less m6A abundances in leukocytes and elevated RNA demethylase FTO proteins. The uremic toxin, indoxyl sulfate, activated the autophagy flux through modulation of FTO and m6A modifications in RNA. Notably, knockdown of FTO or inhibit the m6A by 3-deazaadenosine blocks the effects of indoxyl sulfate on autophagy activation in cells. These findings provide new insights into the mechanisms underlying chronic kidney disease-associated cellular dysfunction. Targeting RNA m6A modification may be a novel strategy for the treatment of chronic kidney diseases and autophagy.
Collapse
Affiliation(s)
- Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 350, Taiwan.
| | - Tien-An Lin
- Department of General Surgery, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Ming-Yun Ho
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Ming-Lung Tsai
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Kuo-Chun Hung
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - I-Chang Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Ming-Shien Wen
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| |
Collapse
|
14
|
Limanaqi F, Biagioni F, Gambardella S, Familiari P, Frati A, Fornai F. Promiscuous Roles of Autophagy and Proteasome in Neurodegenerative Proteinopathies. Int J Mol Sci 2020; 21:E3028. [PMID: 32344772 PMCID: PMC7215558 DOI: 10.3390/ijms21083028] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in autophagy and the ubiquitin proteasome system (UPS) are commonly implicated in protein aggregation and toxicity which manifest in a number of neurological disorders. In fact, both UPS and autophagy alterations are bound to the aggregation, spreading and toxicity of the so-called prionoid proteins, including alpha synuclein (α-syn), amyloid-beta (Aβ), tau, huntingtin, superoxide dismutase-1 (SOD-1), TAR-DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS). Recent biochemical and morphological studies add to this scenario, focusing on the coordinated, either synergistic or compensatory, interplay that occurs between autophagy and the UPS. In fact, a number of biochemical pathways such as mammalian target of rapamycin (mTOR), transcription factor EB (TFEB), Bcl2-associated athanogene 1/3 (BAG3/1) and glycogen synthase kinase beta (GSk3β), which are widely explored as potential targets in neurodegenerative proteinopathies, operate at the crossroad between autophagy and UPS. These biochemical steps are key in orchestrating the specificity and magnitude of the two degradation systems for effective protein homeostasis, while intermingling with intracellular secretory/trafficking and inflammatory pathways. The findings discussed in the present manuscript are supposed to add novel viewpoints which may further enrich our insight on the complex interactions occurring between cell-clearing systems, protein misfolding and propagation. Discovering novel mechanisms enabling a cross-talk between the UPS and autophagy is expected to provide novel potential molecular targets in proteinopathies.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Stefano Gambardella
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Sapienza University of Rome, 00185 Roma, Italy;
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| |
Collapse
|