1
|
Solar P, Joukal M, Silar C, Jancalek R. Impact of analgesic regimen on patient outcome following subarachnoid hemorrhage: positive adjuvant effects of metamizole. Br J Neurosurg 2024; 38:1304-1311. [PMID: 36469604 DOI: 10.1080/02688697.2022.2151563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/24/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Various analgesics are used to control intense headaches in patients following subarachnoid hemorrhage. In addition to pain control, it has been shown that some analgesics can affect various pathophysiological cascades. Therefore, we devised a study to assess whether the use of metamizole has a significant impact on the development of ischemic complications, hydrocephalus, and the overall outcome in patients following aneurysmal subarachnoid hemorrhage in the context of the other non-opioids and opioids effects. METHODS In our retrospective, single-center cohort study, we enrolled 192 patients diagnosed with subarachnoid hemorrhage. We recorded their initial clinical status, comorbidities, and the daily dosage of analgesics over 14 days of hospitalization after the onset of subarachnoid hemorrhage. Using univariate and subsequent multivariate logistic regression analysis, we assessed the influence of various factors, including analgesics, on the development of delayed cerebral ischemia and hydrocephalus, as well as on 2-week and 6-month outcomes. RESULTS Although the administration of non-opioids, in general, had no effect on the development of delayed cerebral ischemia or hydrocephalus, the use of metamizole as the main analgesic was associated with a significantly lower chance of poor outcome at both 2-weeks and 6-months, as well as the development of delayed cerebral ischemia. As opioids were indicated primarily for analgosedation in mechanically ventilated patients with poor clinical status, their usage was associated with a significantly higher chance of poor outcome, delayed cerebral ischemia, and hydrocephalus. CONCLUSION Our results suggest that the prescription of metamizole may be associated with better outcomes and a lower chance of delayed cerebral ischemia development in patients after subarachnoid hemorrhage. Considering the retrospective nature of our study and the limited worldwide availability of metamizole due to its prohibition in some countries, our results do not demonstrate a clear benefit but rather justify the need for subsequent prospective studies.
Collapse
Affiliation(s)
- Peter Solar
- Department of Neurosurgery, St. Anne's University Hospital Brno, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, St. Anne's University Hospital Brno, Masaryk University, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czech Republic
| | - Cenek Silar
- Department of Neurosurgery, St. Anne's University Hospital Brno, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, St. Anne's University Hospital Brno, Masaryk University, Brno, Czech Republic
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne's University Hospital Brno, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, St. Anne's University Hospital Brno, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Maytalman E, Nemutlu Samur D. Neuroendocrine modulation by metamizole and indomethacin: investigating the impact on neuronal markers and GnRH release. Endocrine 2024; 85:1327-1336. [PMID: 38625503 DOI: 10.1007/s12020-024-03822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Some evidence that non-steroidal anti-inflammatory drugs have neuroprotective effects indicates their potential for use in a new field. However, their effects on hormone secretion have yet to be adequately discovered. Therefore, we aimed to evaluate the effects of metamizole and indomethacin on neuronal markers as well as the GnRH expression in the GT1-7 cell line. METHODS The effects of these drugs on proliferation were evaluated by MTT analysis. The effect of 10-50-250 µM concentrations of the drugs also on the expression of neuronal factors and markers, including NGF, nestin and βIII Tubulin, and additionally GnRH, was determined by the RT-qPCR method. RESULTS NGF and nestin mRNA expressions were increased in all concentrations of both metamizole and indomethacin. No changes were detected in βIII Tubulin. While metamizole showed an increase in GnRH mRNA expression, there was no change at 10 and 50 µM concentrations of indomethacin, but a remarkable decrease was observed at 250 µM concentrations. CONCLUSIONS The results of our study showing an increase in the expression of neuronal factors reveal that metamizole and indomethacin may have possible neuroprotective effects. Moreover, the effects on the GnRH expression appear to be different. Animal models are required to confirm these effects of NSAIDs on neurons.
Collapse
Affiliation(s)
- Erkan Maytalman
- Department of Pharmacology, School of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey.
| | - Dilara Nemutlu Samur
- Department of Pharmacology, School of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| |
Collapse
|
3
|
Dehghani F, Abdollahi S, Shidfar F, Clark CCT, Soltani S. Probiotics supplementation and brain-derived neurotrophic factor (BDNF): a systematic review and meta-analysis of randomized controlled trials. Nutr Neurosci 2023; 26:942-952. [PMID: 35996352 DOI: 10.1080/1028415x.2022.2110664] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS An emerging body of evidence has demonstrated the beneficial effects of probiotics on various mental health conditions. In this systematic review and meta-analysis, we sought to examine the effects of probiotics supplementation on brain-derived neurotrophic factor (BDNF) in adults. METHODS PubMed, Scopus, ISI Web of Science, and the Cochrane Library were searched, from database inception to April 2021, for eligible randomized controlled trials (RCTs). We pooled mean differences and standard deviations from RCTs using random-effect models. RESULTS Overall, meta-analysis of 11 trials (n = 648 participants) showed no significant changes in serum level of BDNF following probiotics. However, subgroup analysis revealed that probiotics increased BDNF levels in individuals suffering from neurological disorders (n = 214 participants; WMD = 3.08 ng/mL, 95% CI: 1.83, 4.34; P = 0.001; I2 = 7.5%; P-heterogeneity 0.34), or depression (n = 268 participants; WMD = 0.77 ng/mL, 95% CI: 0.07, 1.47; P = 0.032; I2 = 88.4%; P-heterogeneity < 0.001). Furthermore, a significant increase in BDNF levels was found in studies that administered the mixture of Lactobacillus and Bifidobacterium genera, and were conducted in Asia . CONCLUSION Our main findings suggest that probiotics may be effective in elevating BDNF levels in patients with depression and neurological disorders, and a mixed of Lactobacillus and Bifidobacterium appear to show greater efficacy than the single genus supplement. The low quality of evidence reduces clinical advocacy, and indicates that more large-scale, high-quality, RCTs are needed to facilitate reliable conclusions.
Collapse
Affiliation(s)
- Fereshteh Dehghani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Shima Abdollahi
- Department of Nutrition, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzad Shidfar
- Department of nutrition, School of public health, Iran University of Medical Sciences, Teharn, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
4
|
Grabowska ME, Huang A, Wen Z, Li B, Wei WQ. Drug repurposing for Alzheimer's disease from 2012-2022-a 10-year literature review. Front Pharmacol 2023; 14:1257700. [PMID: 37745051 PMCID: PMC10512468 DOI: 10.3389/fphar.2023.1257700] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Alzheimer's disease (AD) is a debilitating neurodegenerative condition with few treatment options available. Drug repurposing studies have sought to identify existing drugs that could be repositioned to treat AD; however, the effectiveness of drug repurposing for AD remains unclear. This review systematically analyzes the progress made in drug repurposing for AD throughout the last decade, summarizing the suggested drug candidates and analyzing changes in the repurposing strategies used over time. We also examine the different types of data that have been leveraged to validate suggested drug repurposing candidates for AD, which to our knowledge has not been previous investigated, although this information may be especially useful in appraising the potential of suggested drug repurposing candidates. We ultimately hope to gain insight into the suggested drugs representing the most promising repurposing candidates for AD. Methods: We queried the PubMed database for AD drug repurposing studies published between 2012 and 2022. 124 articles were reviewed. We used RxNorm to standardize drug names across the reviewed studies, map drugs to their constituent ingredients, and identify prescribable drugs. We used the Anatomical Therapeutic Chemical (ATC) Classification System to group drugs. Results: 573 unique drugs were proposed for repurposing in AD over the last 10 years. These suggested repurposing candidates included drugs acting on the nervous system (17%), antineoplastic and immunomodulating agents (16%), and drugs acting on the cardiovascular system (12%). Clozapine, a second-generation antipsychotic medication, was the most frequently suggested repurposing candidate (N = 6). 61% (76/124) of the reviewed studies performed a validation, yet only 4% (5/124) used real-world data for validation. Conclusion: A large number of potential drug repurposing candidates for AD has accumulated over the last decade. However, among these drugs, no single drug has emerged as the top candidate, making it difficult to establish research priorities. Validation of drug repurposing hypotheses is inconsistently performed, and real-world data has been critically underutilized for validation. Given the urgent need for new AD therapies, the utility of real-world data in accelerating identification of high-priority candidates for AD repurposing warrants further investigation.
Collapse
Affiliation(s)
- Monika E. Grabowska
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annabelle Huang
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
5
|
Nakayama H, Ihara D, Fukuchi M, Toume K, Yuri C, Tsuda M, Shibahara N, Tabuchi A. The extract based on the Kampo formula daikenchuto (Da Jian Zhong Tang) induces Bdnf expression and has neurotrophic effects in cultured cortical neurons. J Nat Med 2023; 77:584-595. [PMID: 37148454 DOI: 10.1007/s11418-023-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Reductions in brain-derived neurotrophic factor (BDNF) expression levels have been reported in the brains of patients with neurological disorders such as Alzheimer's disease. Therefore, upregulating BDNF and preventing its decline in the diseased brain could help ameliorate neurological dysfunctions. Accordingly, we sought to discover agents that increase Bdnf expression in neurons. Here, we screened a library of 42 Kampo extracts to identify those with the ability to induce Bdnf expression in cultured cortical neurons. Among the active extracts identified in the screen, we focused on the extract based on the Kampo formula daikenchuto. The extract of daikenchuto in the library used in this study was prepared using the mixture of Zingiberis Rhizoma Processum (ZIN), Zanthoxyli Piperiti Pericarpium (ZAN), and Ginseng Radix (GIN) without Koi. In this study, we defined DKT as the mixture of ZIN, ZAN, and GIN without Koi (DKT extract means the extract prepared from the mixture of ZIN, ZAN, and GIN without Koi). DKT extract significantly increased endogenous Bdnf expression by mediated, at least in part, via Ca2+ signaling involving L-type voltage-dependent Ca2+ channels in cultured cortical neurons. Furthermore, DKT extract significantly improved the survival of cultured cortical neurons and increased neurite complexity in immature neurons. Taken together, our findings suggest that DKT extract induces Bdnf expression and has a neurotrophic effect in neurons. Because BDNF inducers are expected to have therapeutic potential for neurological disorders, re-positioning of Kampo formulations such as daikenchuto may lead to clinical application in diseases associated with reduced BDNF in the brain.
Collapse
Affiliation(s)
- Hironori Nakayama
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan.
| | - Kazufumi Toume
- Department of Medicinal Resources Management, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Chisato Yuri
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Naotoshi Shibahara
- Kampo Education and Training Center, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
6
|
Banerjee M, Shenoy RR. Emphasizing roles of BDNF promoters and inducers in Alzheimer's disease for improving impaired cognition and memory. J Basic Clin Physiol Pharmacol 2023; 34:125-136. [PMID: 34751526 DOI: 10.1515/jbcpp-2021-0182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial neurotrophic factor adding to neurons' development and endurance. The amount of BDNF present in the brain determines susceptibility to various neurodegenerative diseases. In Alzheimer's disease (AD), often it is seen that low levels of BDNF are present, which primarily contributes to cognition deficit by regulating long-term potentiation (LTP) and synaptic plasticity. Molecular mechanisms underlying the synthesis, storage and release of BDNF are widely studied. New molecules are found, which contribute to the signal transduction pathway. Two important receptors of BDNF are TrkB and p75NTR. When BDNF binds to the TrkB receptor, it activates three main signalling pathways-phospholipase C, MAPK/ERK, PI3/AKT. BDNF holds an imperative part in LTP and dendritic development, which are essential for memory formation. BDNF supports synaptic integrity by influencing LTP and LTD. This action is conducted by modulating the glutamate receptors; AMPA and NMDA. This review paper discusses the aforesaid points along with inducers of BDNF. Drugs and herbals promote neuroprotection by increasing the hippocampus' BDNF level in various disease-induced animal models for neurodegeneration. Advancement in finding pertinent molecules contributing to the BDNF signalling pathway has been discussed, along with the areas that require further research and study.
Collapse
Affiliation(s)
- Madhuparna Banerjee
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Udupi District, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Udupi District, Karnataka, India
| |
Collapse
|
7
|
Xue B, Waseem SMA, Zhu Z, Alshahrani MA, Nazam N, Anjum F, Habib AH, Rafeeq MM, Nazam F, Sharma M. Brain-Derived Neurotrophic Factor: A Connecting Link Between Nutrition, Lifestyle, and Alzheimer’s Disease. Front Neurosci 2022; 16:925991. [PMID: 35692417 PMCID: PMC9177140 DOI: 10.3389/fnins.2022.925991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) involving tropomyosin kinase B and low affinity p75 neurotropin receptors is the most abundant and researched neurotropins in mammal’s brain. It is one of the potential targets for therapeutics in Alzheimer’s disease (AD) owing to its key role in synaptic plasticity. Low levels of BDNF are implicated in the pathophysiology of neurological diseases including AD. However, a healthy lifestyle, exercise, and dietary modifications are shown to positively influence insulin regulation in the brain, reduce inflammation, and up-regulate the levels of BDNF, and are thus expected to have roles in AD. In this review, the relationship between BDNF, mental health, and AD is discussed. Insights into the interrelationships between nutrition, lifestyle, and environment with BDNF and possible roles in AD are also provided in the review. The review sheds light on the possible new therapeutic targets in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bin Xue
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | | | - Zhixin Zhu
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Mohammed A. Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Nazia Nazam
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Hamed Habib
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Misbahuddin M. Rafeeq
- Department of Pharmacology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fauzia Nazam
- Section of Psychology, Women’s College, Aligarh Muslim University, Aligarh, India
| | - Monika Sharma
- Department of Zoology, Aligarh Muslim University, Aligarh, India
- *Correspondence: Monika Sharma,
| |
Collapse
|
8
|
Fukuchi M, Watanabe K, Mitazaki S, Fukuda M, Matsumoto S. Aminothioneine, a product derived from golden oyster mushrooms (Pleurotus cornucopiae var. citrinopileatus), activates Ca2+ signal-mediated brain-derived neurotrophic factor expression in cultured cortical neurons. Biochem Biophys Rep 2021; 28:101185. [PMID: 34977362 PMCID: PMC8683675 DOI: 10.1016/j.bbrep.2021.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Ameliorating reduced brain-derived neurotrophic factor (BDNF) expression or maintaining high BDNF levels in the brain has been suggested to improve brain function in neurological diseases and prevent aging-related brain dysfunction. In this study, we found that a food-derived product, Aminothioneine® (AT), which is prepared from the extract of golden oyster mushrooms (Pleurotus cornucopiae var. citrinopileatus), increased Bdnf mRNA expression levels in primary rat cortical neuron cultures. Ergothioneine (ET) comprises more than 1% in AT and is an active constituent of AT, and ET has been reported to increase neurotrophin-4/5, but not BDNF, expression levels in neural stem cells. ET also did not affect Bdnf mRNA expression in cultured cortical neurons, suggesting that AT contains other active constituents that induce Bdnf mRNA expression in neurons. AT-induced Bdnf mRNA expression was completely blocked by d-(−)-2-Amino-5-phosphonopentanoic acid but partially blocked by nicardipine, U0126, and FK506. This result suggested that N-methyl-d-aspartate receptor-derived Ca2+ signals, including those mediated by extracellular signal-regulated kinase/mitogen-activated protein kinase and calcineurin, are the main contributors to Bdnf mRNA induction. In addition, AT increased cAMP-response element-binding protein (CREB) phosphorylation and the nuclear localization of CREB-regulated transcriptional coactivator 1 in neurons. Thus, AT can increase Bdnf mRNA expression via Ca2+ signal-induced CREB-dependent transcription in neurons. Because AT is a food-derived product, increasing and/or maintaining BDNF levels in the brain by daily intake of the product could be possible, which may be beneficial for neurological and aging-related disorders. Aminothioneine® (AT) induced Bdnf mRNA expression in cultured rat cortical neurons. Ergothioneine tended to induce Nt-4/5 but did not affect Bdnf mRNA expression. AT activated MAPK and calcineurin-regulated CREB-dependent transcription.
Collapse
Affiliation(s)
- Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
- Corresponding author.
| | - Kazuki Watanabe
- Laboratory of Natural Medicines, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Satoru Mitazaki
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Momoko Fukuda
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Satoshi Matsumoto
- LS Corporation Co., Ltd, 13-4 Nihonbashi Kodenma-cho, Chuo-ku, Tokyo, 103-0001, Japan
| |
Collapse
|
9
|
Li X, Zhao J, Li Z, Zhang L, Huo Z. Applications of Acupuncture Therapy in Modulating the Plasticity of Neurodegenerative Disease and Depression: Do MicroRNA and Neurotrophin BDNF Shed Light on the Underlying Mechanism? Neural Plast 2020; 2020:8850653. [PMID: 33029119 PMCID: PMC7527896 DOI: 10.1155/2020/8850653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 09/05/2020] [Indexed: 02/08/2023] Open
Abstract
As the global population ages, the incidence of neurodegenerative diseases has risen. Furthermore, it has been suggested that depression, especially in elderly people, may also be an indication of latent neurodegeneration. Stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) are usually accompanied by depression. The urgent challenge is further enforced by psychiatric comorbid conditions, particularly the feeling of despair in these patients. Fortunately, as our understanding of the neurobiological substrates of maladies affecting the central nervous system (CNS) has increased, more therapeutic options and novel potential biological mechanisms have been presented: (1) Neurodegenerative diseases share some similarities in their pathological characteristics, including changes in neuron structure or function and neuronal plasticity. (2) MicroRNAs (miRNAs) are small noncoding RNAs that contribute to the pathogenesis of diverse neurological disease. (3) One ubiquitous neurotrophin, brain-derived neurotrophic factor (BDNF), is crucial for the development of the nervous system. Accumulating data have indicated that miRNAs not only are related to BDNF regulation but also can directly bind with the 3'-UTR of BDNF to regulate BDNF and participate in neuroplasticity. In this short review, we present evidence of shared biological substrates among stroke, AD, PD, and depression and summarize the possible influencing mechanisms of acupuncture on the neuroplasticity of these diseases. We discuss neuroplasticity underscored by the roles of miRNAs and BDNF, which might further reveal the potential biological mechanism of neurodegenerative diseases and depression by acupuncture.
Collapse
Affiliation(s)
- Xia Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhigang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zejun Huo
- Department of Chinese Medicine, Peking University 3rd Hospital, Beijing 100191, China
| |
Collapse
|