1
|
Tuersunjiang T, Wang Q, Wang Z, Gao F, Wang Z. Photochemically induced thrombosis combined with chronic restraint stress for modeling post-stroke depression in mice. Front Neurosci 2025; 19:1547551. [PMID: 40092064 PMCID: PMC11906474 DOI: 10.3389/fnins.2025.1547551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Post-stroke depression (PSD) is a prevalent neuropsychiatric disorder associated with impaired recovery in stroke survivors, potentially linked to dysregulation of brain-derived neurotrophic factor (BDNF). This study aimed to establish a novel animal model of PSD by integrating ischemic brain injury with chronic psychological stress. Methods Mice were subjected to photochemically induced thrombosis (PIT) to generate focal ischemic lesions in the parietal lobe, followed by chronic restraint stress (CRS) to simulate post-stroke psychological stress. Behavioral assessments (sucrose preference test, forced swim test, tail suspension test) and molecular analyses (BDNF, synaptophysin [SYP], interleukin-1 [IL-1], tumor necrosis factor-α [TNF-α]) were conducted to evaluate depressive-like phenotypes and neuroinflammatory markers. Results The PIT model produced consistent ischemic damage, with an average infarct area of 2.580 ± 0.426% in the parietal lobe. Mice exposed to PIT-CRS exhibited significant depressive-like behaviors, including reduced sucrose preference (p < 0.001), increased immobility time in the forced swim test (p = 0.056), and prolonged immobility in the tail suspension test (p = 0.168) compared to the Sham group. Molecular analyses revealed marked downregulation of BDNF (p = 0.004) and SYP (p = 0.074), alongside upregulated IL-1 (p = 0.024) and TNF-α (p = 0.368) levels in the PIT-CRS group. Conclusion The PIT-CRS model provides a comprehensive and reproducible platform for studying PSD. By integrating both ischemic injury and chronic stress, this model captures the multifaceted nature of PSD and offers valuable insights into its pathophysiology. Future research using this model could pave the way for the development of targeted therapies for PSD.
Collapse
Affiliation(s)
| | - Qingchen Wang
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhengzheng Wang
- The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Feng Gao
- The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhengchun Wang
- The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Bederska-Łojewska D, Szczepanik K, Turek J, Machaczka A, Gąsior Ł, Pochwat B, Piotrowska J, Rospond B, Szewczyk B. Dietary Zinc Restriction and Chronic Restraint Stress Affect Mice Physiology, Immune Organ Morphology, and Liver Function. Nutrients 2024; 16:3934. [PMID: 39599720 PMCID: PMC11597199 DOI: 10.3390/nu16223934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Preclinical and clinical studies suggest that zinc deficiency and chronic stress contribute to depressive symptoms. Our study explores the intricate relationship between these factors by examining their physiological and biochemical effects across various organs in C57Bl/6J mice. METHODS The mice were divided into four groups: control, chronic restraint stress for 3 weeks, a zinc-restricted diet (<3 mg/kg) for 4 weeks, and a combination of stress and zinc restriction. Mice spleen and thymus weights were measured, and hematoxylin-eosin staining was conducted for liver and intestinal morphometry. Moreover, metallothionein (MT-1, MT-2, and MT-3), zinc transporter (ZnT-1), oxidative stress markers (TBARS, SOD, and GSH-Px), and zinc, iron, and copper concentrations in the liver were evaluated. Immunohistochemical analysis of the jejunum for ZIP1 and ZIP4 was also performed. CONCLUSIONS Our findings reveal that dietary zinc restriction and chronic stress induce structural changes in the intestines and immune organs and impact metallothionein expression, oxidative stress, and liver iron and copper homeostasis.
Collapse
Affiliation(s)
- Dorota Bederska-Łojewska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Kinga Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska 1, 32-083 Balice, Poland;
| | - Justyna Turek
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Łukasz Gąsior
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Joanna Piotrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Bartłomiej Rospond
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| |
Collapse
|
3
|
Gilbert KF, Amontree M, Deasy S, Ma J, Conant K. Pramipexole, a D3 receptor agonist, increases cortical gamma power and biochemical correlates of cortical excitation; implications for mood disorders. Eur J Neurosci 2024; 60:6490-6508. [PMID: 39410873 DOI: 10.1111/ejn.16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Major depressive disorder (MDD) has been associated with deficits in working memory as well as underlying gamma oscillation power. Consistent with this, overall reductions in cortical excitation have also been described with MDD. In previous work, we have demonstrated that the monoamine reuptake inhibitor venlafaxine increases gamma oscillation power in ex vivo hippocampal slices and that this is associated with concomitant increases in pyramidal arbour and reduced levels of plasticity-restricting perineuronal nets (PNNs). In the present study, we have examined the effects of chronic treatment with pramipexole (PPX), a D3 dopamine receptor agonist, for its effects on gamma oscillation power as measured by in vivo electroencephalography (EEG) recordings in female BALB/c and C57Bl6 mice. We observe a modest but significant increase in 20-50 Hz gamma power with PPX in both strains. Additionally, biochemical analysis of prefrontal cortex lysates from PPX-treated BALB/c mice shows a number of changes that could contribute to, or follow from, increased pyramidal excitability and/or gamma power. PPX-associated changes include reduced levels of specific PNN components as well as tissue inhibitor of matrix metalloproteases-1 (TIMP-1), which inhibits long-term potentiation of synaptic transmission. Consistent with its effects on gamma power, PNN proteins and TIMP-1, chronic PPX treatment also improves working memory and reduces anhedonia. Together these results add to an emerging literature linking extracellular matrix and/or gamma oscillation power to both mood and cognition.
Collapse
Affiliation(s)
- Karli F Gilbert
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine (GUMC), Washington, D.C., USA
| | - Matthew Amontree
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine (GUMC), Washington, D.C., USA
| | | | - Junfeng Ma
- Department of Oncology, GUMC, Washington, D.C., USA
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine (GUMC), Washington, D.C., USA
- Department of Neuroscience, GUMC, Washington, D.C., USA
| |
Collapse
|
4
|
Shimada T, Kohyama K, Yoshida T, Yamagata K. Neuritin Controls Axonal Branching in Serotonin Neurons: A Possible Mediator Involved in the Regulation of Depressive and Anxiety Behaviors via FGF Signaling. J Neurosci 2024; 44:e0129232024. [PMID: 39197941 PMCID: PMC11466069 DOI: 10.1523/jneurosci.0129-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Abnormal neuronal morphological features, such as dendrite branching, axonal branching, and spine density, are thought to contribute to the symptoms of depression and anxiety. However, the role and molecular mechanisms of aberrant neuronal morphology in the regulation of mood disorders remain poorly characterized. Here, we show that neuritin, an activity-dependent protein, regulates the axonal morphology of serotonin neurons. Male neuritin knock-out (KO) mice harbored impaired axonal branches of serotonin neurons in the medial prefrontal cortex and basolateral region of the amygdala (BLA), and male neuritin KO mice exhibited depressive and anxiety-like behaviors. We also observed that the expression of neuritin was decreased by unpredictable chronic stress in the male mouse brain and that decreased expression of neuritin was associated with reduced axonal branching of serotonin neurons in the brain and with depressive and anxiety behaviors in mice. Furthermore, the stress-mediated impairments in axonal branching and depressive behaviors were reversed by the overexpression of neuritin in the BLA. The ability of neuritin to increase axonal branching in serotonin neurons involves fibroblast growth factor (FGF) signaling, and neuritin contributes to FGF-2-mediated axonal branching regulation in vitro. Finally, the oral administration of an FGF inhibitor reduced the axonal branching of serotonin neurons in the brain and caused depressive and anxiety behaviors in male mice. Our results support the involvement of neuritin in models of stress-induced depression and suggest that neuronal morphological plasticity may play a role in controlling animal behavior.
Collapse
Affiliation(s)
- Tadayuki Shimada
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Kuniko Kohyama
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
- Department of Psychiatry, Takada Nishishiro Hospital, Joetsu, Niigata 943-0834, Japan
| |
Collapse
|
5
|
Pang S, Higgins GA, Wiley JW, Hou X, Lin R, Zheng G. Water Avoidance-Stress Induces Differential Colon Transcriptomic Responses in BALB/c and C57BL/6 Mice Irritable Bowel Syndrome Model. GASTRO HEP ADVANCES 2024; 3:1116-1119. [PMID: 39529650 PMCID: PMC11550736 DOI: 10.1016/j.gastha.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/22/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, Michigan
| | - John W. Wiley
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gen Zheng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Kamens HM, Anziano EK, Horton WJ, Cavigelli SA. Chronic Adolescent Restraint Stress Downregulates miRNA-200a Expression in Male and Female C57BL/6J and BALB/cJ Mice. Genes (Basel) 2024; 15:873. [PMID: 39062652 PMCID: PMC11275362 DOI: 10.3390/genes15070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Adolescence is a critical developmental period when the brain is plastic, and stress exposure can have lasting physiological consequences. One mechanism through which adolescent stress may have lasting effects is by altering microRNAs (miRNAs), leading to wide-scale gene expression changes. Three prior independent studies used unbiased approaches (RNA sequencing or microarray) to identify miRNAs differentially expressed by chronic variable stress in male rodents. In all three studies, miRNA-200a was differentially expressed in areas of the brain associated with emotion regulation. The current study extends this research to determine if chronic non-variable adolescent stress downregulates miRNA-200a expression by looking at two strains (BALB/cJ and C57BL/6J) of male and female mice. We utilized a 14-day (2 h/day) restraint stress protocol and verified stress effects on adolescent body weight gain and circulating corticosterone concentrations relative to non-restraint controls. Mice were then left undisturbed until they were euthanized in adulthood, at which time brains were collected to measure miRNA-200a in the ventral hippocampus. Three weeks after adolescent stress ended, differences in body weight between groups were no longer significant; however, animals exposed to stress had less miRNA-200a expression in the ventral hippocampus than control animals. These data implicate miRNA-200a expression as a potential mechanism by which adolescent stress can have persistent impacts on multiple outcomes in both male and female mice.
Collapse
Affiliation(s)
- Helen M. Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16801, USA (W.J.H.); (S.A.C.)
| | | | | | | |
Collapse
|
7
|
Chen G, Zhang W, Li D, Song J, Dong M. Testosterone synthesis was inhibited in the testis metabolomics of a depression mouse model. J Affect Disord 2024; 350:627-635. [PMID: 38244803 DOI: 10.1016/j.jad.2024.01.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
INTRODUCTION Depression is a common emotional disorder. Previous studies have suggested that depression is associated with the central nervous system. Recent studies have suggested that reduced testosterone level is the core inducement of depression. Testis is the vital organ for the synthesis of testosterone. How does testis mediate depression is still unknown. OBJECTIVES We adopted a classical depression model of mouse caused through chronic mild stress (CMS). The metabolomics liquid chromatography-mass spectrometry was adopted to analyse the influence of CMS on testis metabolism. Then we confirmed the possible abnormal metabolism of the testis in depression mice by pathway analysis and molecular biological technique. RESULTS Compared with control mice, 16 differential metabolites were found in CMS mice by multivariate statistical analysis. In comparison with control mice, CMS mice showed higher levels for campesterol, ribitol, citric acid, platelet activating factor, guanosine, cytosine and xanthine and lower levels for docosahexaenoic acid, hippuric acid, creatine, testosterone, dehydroepiandrosterone, progesterone, l-carnitine, acetyl carnitine and propionyl carnitine. The pathway analysis indicated that these differential metabolites are associated with steroid hormone synthesis, purine metabolism and phenylalanine metabolism. In addition, we also first discovered that testicular morphology in depression mice was damaged and steroid hormone synthetases (including steroidogenic acute regulatory protein and P450 cholesterol side chain cleavage) were inhibited. CONCLUSION These findings may be helpful to parse molecular mechanisms of pathophysiology of depression. It also pointed out the direction to search for potential therapy schedules for male depression and provide novel insights into exploring the pathogenesis of male depression.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenbin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongyan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meixue Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
8
|
Medina-Saldivar C, Cruz-Visalaya S, Zevallos-Arias A, Pardo GVE, Pacheco-Otálora LF. Differential effect of chronic mild stress on anxiety and depressive-like behaviors in three strains of male and female laboratory mice. Behav Brain Res 2024; 460:114829. [PMID: 38141784 DOI: 10.1016/j.bbr.2023.114829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Major depressive disorder is the most common psychiatric disorder worldwide. To understand mechanisms and search for new approaches to treating depression, animal models are crucial. Chronic mild stress (CMS) is the most used animal model of depression. Although CMS is considered a robust model of depression, conflicting results have been reported for emotion-related behaviors, which the intrinsic characteristics of each rodent strain could explain. To further shed light on the impact of genetic background on the relevant parameters commonly addressed in depression, we examined the effect of 4-weeks CMS on anxiety and depression-related behaviors and body weight gain in three strain mice (BALB/c, C57BL/6, and CD1) of both sexes. CMS reduced body weight gain in C57BL/6NCrl and CD1 male mice. C57BL/6 animals exhibited a more pronounced anxious-like behavior than CD1 and BALB/c mice in the light-dark box (LDB) and the elevated plus maze (EPM) tests, whereas BALB/c animals exhibited the more robust depressive-like phenotype in the splash test (ST), tail suspension test (TST) and forced-swimming test (FST). Under CMS, exposure did not affect anxiety-related behaviors in any strain but induced depression-like behaviors strain-dependently. CMS C57BL/6 and CD1 mice of both sexes showed depression-like behaviors, and CMS BALB/c male mice exhibited reduced depressive behaviors in the FST. These results suggest a differential effect of stress, with the C57BL/6 strain being more vulnerable to stress than the CD1 and BALB/c strain mice. Furthermore, our findings emphasize the need for researchers to consider mouse strains and behavioral tests in their CMS experimental designs.
Collapse
Affiliation(s)
- Carlos Medina-Saldivar
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - Sergio Cruz-Visalaya
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - Anzu Zevallos-Arias
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - Grace V E Pardo
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru.
| | - Luis F Pacheco-Otálora
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| |
Collapse
|
9
|
Kim H, Kim H, Suh HJ, Choi HS. Lactobacillus brevis-Fermented Gamma-Aminobutyric Acid Ameliorates Depression- and Anxiety-Like Behaviors by Activating the Brain-Derived Neurotrophic Factor-Tropomyosin Receptor Kinase B Signaling Pathway in BALB/C Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2977-2988. [PMID: 38300259 DOI: 10.1021/acs.jafc.3c07260] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
This study investigated the effects of Lactobacillus brevis-fermented gamma-aminobutyric acid (LB-GABA) on depressive and anxiety-like behaviors with the underlying molecular mechanism in a chronic stress model of BALB/c mice. LB-GABA attenuates both neuronal cell death and the increase of monoamine oxidase activity induced by hydrogen peroxide. Behavioral tests revealed that GABA significantly increased sucrose preference and reduced immobility time in both tail suspension and forced swimming tests. LB-GABA increased exploration of the open arms in the elevated plus maze and restored activity in the open field. Moreover, LB-GABA lowered stress hormone and inflammatory mediator levels. Mechanistically, LB-GABA increased protein levels of BDNF and TrkB, activating downstream targets (AKT, ERK, and CREB), crucial for neuronal survival and plasticity. Furthermore, LB-GABA protected hippocampal neurons from stress-induced cell death and increased serotonin and dopamine levels. Overall, LB-GABA has the potential to alleviate stress-induced depression and anxiety-like symptoms and neuroinflammation by activating the BDNF-TrkB signaling pathway.
Collapse
Affiliation(s)
- Hyeongyeong Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hoon Kim
- College of Biotechnology and Natural Resources, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
10
|
Winter JJ, Rodríguez-Acevedo KL, Dittrich M, Heller EA. Early life adversity: Epigenetic regulation underlying drug addiction susceptibility. Mol Cell Neurosci 2023; 125:103825. [PMID: 36842544 PMCID: PMC10247461 DOI: 10.1016/j.mcn.2023.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023] Open
Abstract
Drug addiction is a leading cause of disability worldwide, with more than 70,000 Americans dying from drug overdose in 2019 alone. While only a small percentage of chronic drug users escalate to drug addiction, little is understood on the precise mechanisms of this susceptibility. Early life adversity is causally relevant to adult psychiatric disease and may contribute to the risk of addiction. Here we review recent pre-clinical evidence showing that early life exposure to stress and/or drugs regulates changes in behavior, gene expression, and the epigenome that persist into adulthood. We summarize the major findings and gaps in the preclinical literature, highlighting studies that demonstrate the often profound differences between female and male subjects.
Collapse
Affiliation(s)
| | | | - Mia Dittrich
- University of Pennsylvania, Philadelphia, PA 19106, USA
| | | |
Collapse
|
11
|
Armario A, Belda X, Gagliano H, Fuentes S, Molina P, Serrano S, Nadal R. Differential Hypothalamic-pituitary-adrenal Response to Stress among Rat Strains: Methodological Considerations and Relevance for Neuropsychiatric Research. Curr Neuropharmacol 2023; 21:1906-1923. [PMID: 36453492 PMCID: PMC10514526 DOI: 10.2174/1570159x21666221129102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
The hormones of the hypothalamic-pituitary-adrenal (HPA) axis, particularly glucocorticoids (GCs), play a critical role in the behavioral and physiological consequences of exposure to stress. For this reason, numerous studies have described differences in HPA function between different rodent strains/lines obtained by genetic selection of certain characteristics not directly related to the HPA axis. These studies have demonstrated a complex and poorly understood relationship between HPA function and certain relevant behavioral characteristics. The present review first remarks important methodological considerations regarding the evaluation and interpretation of resting and stress levels of HPA hormones. Then, it presents works in which differences in HPA function between Lewis and Fischer rats were explored as a model for how to approach other strain comparisons. After that, differences in the HPA axis between classical strain pairs (e.g. High and Low anxiety rats, Roman high- and low-avoidance, Wistar Kyoto versus Spontaneously Hypertensive or other strains, Flinder Sensitive and Flinder Resistant lines) are described. Finally, after discussing the relationship between HPA differences and relevant behavioral traits (anxiety-like and depression-like behavior and coping style), an example for main methodological and interpretative concerns and how to test strain differences is offered.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Traslational Neuroscience Unit, UAB-Parc Taulí, Sabadell, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
- CIBERSAM, ISCIII, Madrid, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Silvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychobiology, Faculty of Psychology, Universidad de Granada, Granada, Spain
| | - Patricia Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Sara Serrano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Traslational Neuroscience Unit, UAB-Parc Taulí, Sabadell, Spain
- CIBERSAM, ISCIII, Madrid, Spain
- Psychobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Matsuno H, Tsuchimine S, O'Hashi K, Sakai K, Hattori K, Hidese S, Nakajima S, Chiba S, Yoshimura A, Fukuzato N, Kando M, Tatsumi M, Ogawa S, Ichinohe N, Kunugi H, Sohya K. Association between vascular endothelial growth factor-mediated blood-brain barrier dysfunction and stress-induced depression. Mol Psychiatry 2022; 27:3822-3832. [PMID: 35618888 DOI: 10.1038/s41380-022-01618-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
Several lines of evidence suggest that stress induces the neurovascular dysfunction associated with increased blood-brain barrier (BBB) permeability, which could be an important pathology linking stress and psychiatric disorders, including major depressive disorder (MDD). However, the detailed mechanism resulting in BBB dysfunction associated in the pathophysiology of MDD still remains unclear. Herein, we demonstrate the role of vascular endothelial growth factor (VEGF), a key mediator of vascular angiogenesis and BBB permeability, in stress-induced BBB dysfunction and depressive-like behavior development. We implemented an animal model of depression, chronic restraint stress (RS) in BALB/c mice, and found that the BBB permeability was significantly increased in chronically stressed mice. Immunohistochemical and electron microscopic observations revealed that increased BBB permeability was associated with both paracellular and transcellular barrier alterations in the brain endothelial cells. Pharmacological inhibition of VEGF receptor 2 (VEGFR2) using a specific monoclonal antibody (DC101) prevented chronic RS-induced BBB permeability and anhedonic behavior. Considered together, these results indicate that VEGF/VEGFR2 plays a crucial role in the pathogenesis of depression by increasing the BBB permeability, and suggest that VEGFR2 inhibition could be a potential therapeutic strategy for the MDD subtype associated with BBB dysfunction.
Collapse
Affiliation(s)
- Hitomi Matsuno
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Shoko Tsuchimine
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kazunori O'Hashi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Psychiatry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shingo Nakajima
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montreal, QC, H2X 0A9, Canada
| | - Shuichi Chiba
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Faculty of Veterinary Medical Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama-shi, Okayama, 700-0005, Japan
| | - Aya Yoshimura
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Education and Research Center of Animal Models for Human Diseases, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Noriko Fukuzato
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Mayumi Kando
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Megumi Tatsumi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Shintaro Ogawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Psychiatry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuhiro Sohya
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan. .,Division of Physiology, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| |
Collapse
|
13
|
Zhang F, Zhu X, Yu P, Sheng T, Wang Y, Ye Y. Crocin ameliorates depressive-like behaviors induced by chronic restraint stress via the NAMPT-NAD+-SIRT1 pathway in mice. Neurochem Int 2022; 157:105343. [DOI: 10.1016/j.neuint.2022.105343] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/16/2022] [Accepted: 04/15/2022] [Indexed: 12/22/2022]
|
14
|
Mao Y, Xu Y, Yuan X. Validity of chronic restraint stress for modeling anhedonic-like behavior in rodents: a systematic review and meta-analysis. J Int Med Res 2022; 50:3000605221075816. [PMID: 35196899 PMCID: PMC8891861 DOI: 10.1177/03000605221075816] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chronic restraint stress (CRS) is widely used to recapitulate depression phenotypes in rodents but is frequently criticized for a perceived lack of efficacy. The aim of this study was to evaluate anhedonic-like behavior in the CRS model in rodents by performing a meta-analysis of studies that included sucrose preference tests. METHODS This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. We comprehensively searched for eligible studies published before June 2021 in the PubMed, Embase, Medline, and Web of Science databases. We chose sucrose preference ratio as the indicative measure of anhedonia because it is a core symptom of depression in humans. RESULTS Our pooled analysis included 34 articles with 57 studies and seven rodent species/strains and demonstrated decreased sucrose preference in the stress group compared with controls. The duration of CRS differentially affected the validity of anhedonic-like behavior in the models. Rats exhibited greater susceptibility to restraint stress than mice, demonstrating inter-species variability. CONCLUSIONS Our meta-analysis of studies that used the CRS paradigm to evaluate anhedonic-like behavior in rodents was focused on a core symptom of depression (anhedonia) as the main endpoint of the model and identified species-dependent susceptibility to restraint stress.
Collapse
Affiliation(s)
- Ye Mao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Yuan
- Department of Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Kitagawa Y, Hayakawa K, Oikawa D, Ikeda K, Ikeda M, Harada D, Furuse M. Repeated restraint stress modifies fatty acid and amino acid metabolism in the mouse skin. J Vet Med Sci 2022; 84:511-519. [PMID: 35173101 PMCID: PMC9096037 DOI: 10.1292/jvms.21-0602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In modern society, stress caused by relationships and emotions is one of the greatest
social problems. Similar to humans, domestic and captive animals live under various
stresses. Several stresses have been associated with skin disorders, such as atopic
dermatitis, but there is a lack of reliable and objective indicators for the
characterization of this association. This study aimed to define the changes in fatty acid
composition and amino acid concentration in the skin following repeated restraint stress
in ICR mice. Mice subjected to 30 min of daily restraint stress for 8 days showed changes
in the composition of saturated fatty acids, such as an increase in palmitic acid content,
which are the substrates of Δ-9 desaturase. Conversely, unsaturated fatty acids decreased
with stress treatment, which appeared to be a result of these fatty acids being the
substrate of Δ-6 desaturase. Changes in fatty acid composition after stress treatment may
be one of the factors that cause skin inflammation. The water-retention capacity may have
been lowered by stress treatment because histidine and leucine, which are natural
moisturizing factors, were significantly decreased. The collagen content in the skin
gradually decreased after repeated stress treatment. Our results indicate that repeated
restraint stress may impact skin health through changes in both the fatty acid composition
and amino acid concentration in mice.
Collapse
Affiliation(s)
- Yume Kitagawa
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University
| | - Kaho Hayakawa
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University
| | | | - Kazuki Ikeda
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University
| | - Maki Ikeda
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University
| | - Daiki Harada
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University
| |
Collapse
|
16
|
Comparative analysis of restraint stress-induced depressive-like phenotypes in C57BL/6N mice derived from three different sources. Lab Anim Res 2020; 36:29. [PMID: 32874958 PMCID: PMC7448453 DOI: 10.1186/s42826-020-00062-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
C57BL/6NKorl mice are a novel mouse stock recently developed by the National Institute of Food and Drug Safety Evaluation in Korea. Extensive research into the nature of C57BL/6NKorl mice is being conducted. However, there is no scientific evidence for the phenotypic response to restraint stress (RST), a stress paradigm for modeling depressive disorders, in rodents. In this study, we investigated the repeated RST-induced depressive-like phenotypes in C57BL/6 N mouse substrains (viz., C57BL/6NKorl mice from Korea, C57BL/6NA mice from the United States, and C57BL/6NB mice from Japan) obtained from different sources. The results showed that C57BL/6 N mice derived from various sources exposed to repeated RST resulted in depressive-like phenotypes reflected by a similar degree of behavioral modification and susceptibility to oxidative stress in a duration-dependent manner, except for the distinctive features (increased body weight (BW) and tolerance to the suppression of BW gain by exposure to repeated RST) in C57BL/6NKorl mice. Taken together, the duration-dependent alteration in depressive-like phenotypes by repeated exposure to RST observed in this study may provide valuable insights into the nature of C57BL/6NKorl mice as an alternative animal resource for better understanding of the etiology of depressive disorders and the mechanisms of antidepressant actions.
Collapse
|