Kasamatsu S, Tsutsuki H, Ida T, Sawa T, Watanabe Y, Akaike T, Ihara H. Regulation of nitric oxide/reactive oxygen species redox signaling by nNOS splicing variants.
Nitric Oxide 2022;
120:44-52. [PMID:
35033681 DOI:
10.1016/j.niox.2022.01.004]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
Abstract
We previously demonstrated different expression patterns of the neuronal nitric oxide synthase (nNOS) splicing variants, nNOS-μ and nNOS-α, in the rat brain; however, their exact functions have not been fully elucidated. In this study, we compared the enzymatic activities of nNOS-μ and nNOS-α and investigated intracellular redox signaling in nNOS-expressing PC12 cells, stimulated with a neurotoxicant, 1-methyl-4-phenylpyridinium ion (MPP+), to enhance the nNOS uncoupling reaction. Using in vitro studies, we show that nNOS-μ produced nitric oxide (NO), as did nNOS-α, in the presence of tetrahydrobiopterin (BH4), an important cofactor for the enzymatic activity. However, nNOS-μ generated more NO and less superoxide than nNOS-α in the absence of BH4. MPP + treatment induced more reactive oxygen species (ROS) production in nNOS-α-expressing PC12 cells than in those expressing nNOS-μ, which correlated with the intracellular production of 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), a downstream messenger of nNOS redox signaling, and apoptosis in these cells. Furthermore, post-treatment with 8-nitro-cGMP aggravated MPP+-induced cytotoxicity via activation of the H-Ras/extracellular signal-regulated kinase signaling pathway. In conclusion, our results provide strong evidence that nNOS-μ exhibits distinctive enzymatic properties of NO/ROS production, contributing to the regulation of intracellular redox signaling, including the downstream production of 8-nitro-cGMP.
Collapse