1
|
Cheng B, Li H, Peng X, Chen J, Shao C, Kong Z. Recent advances in developing targeted protein degraders. Eur J Med Chem 2025; 284:117212. [PMID: 39736199 DOI: 10.1016/j.ejmech.2024.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Targeted protein degradation (TPD) represents a promising therapeutic approach, encompassing several innovative strategies, including but not limited to proteolysis targeting chimeras (PROTACs), molecular glues, hydrophobic tag tethering degraders (HyTTD), and lysosome-targeted chimeras (LYTACs). Central to TPD are small molecule ligands, which play a critical role in mediating the degradation of target proteins. This review summarizes the current landscape of small molecule ligands for TPD molecules. These small molecule ligands can utilize the proteasome, lysosome, autophagy, or hydrophobic-tagging system to achieve the degradation of target proteins. The article mainly focuses on introducing their design principles, application advantages, and potential limitations. A brief discussion on the development prospects and future directions of TPD technology was also provided.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, 435003, China; Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Hongqiao Li
- The Central Hospital of Huangshi, Huangshi, 435000, China
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| | - Zhihua Kong
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, FoShan, 528200, China.
| |
Collapse
|
2
|
Chen Y, Chen B, Hong Y, Chen L, Zheng S. SENP1 promotes deacetylation of isocitrate dehydrogenase 2 to inhibit ferroptosis of breast cancer via enhancing SIRT3 stability. Biotechnol Appl Biochem 2024. [PMID: 39690748 DOI: 10.1002/bab.2699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024]
Abstract
Breast cancer, one of the most prevalent malignant tumors in women worldwide, is characterized by a poor prognosis and high susceptibility to recurrence and metastasis. Ferroptosis, a lipid peroxide-dependent programed cell death pathway, holds significant potential for breast cancer treatment. Therefore, investigating the regulatory targets and associated mechanisms of ferroptosis is crucial. In this study, we conducted proteomic screening and identified isocitrate dehydrogenase 2 (IDH2) as an important player in breast cancer progression. Our findings were further supported by CCK-8 assays, transwell experiments, and scratch assays, which demonstrated that the elevated expression of IDH2 promotes breast cancer progression. Through both in vitro and in vivo experiments along with the erastin treatment, we discovered that increased expression of IDH2 confers resistance to ferroptosis in breast cancer cells. By employing Western blot analysis, Co-IP techniques, and immunofluorescence staining methods, we elucidated the upstream molecular mechanism involving SENP1-mediated SIRT3 de-SUMOylatase, which enhances IDH2 enzyme activity through deacetylation, thereby regulating cell ferroptosis. In conclusion, our study highlights the role of the SENP1-SIRT3 axis in modulating ferroptosis via IDH2 in breast cancer cells, providing valuable insights for developing targeted therapies aimed at enhancing ferroptosis for improved management of breast cancer.
Collapse
Affiliation(s)
- Yaomin Chen
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bin Chen
- Department of Ultrasound, Yueqing Sixth People's Hospital, Yueqing, Zhejiang, China
| | - Yun Hong
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Chen
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Chen J, Li ZY, Zheng G, Cao L, Guo YM, Lian Q, Gu B, Yue CF. RNF4 mediated degradation of PDHA1 promotes colorectal cancer metabolism and metastasis. NPJ Precis Oncol 2024; 8:258. [PMID: 39521913 PMCID: PMC11550450 DOI: 10.1038/s41698-024-00724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigates the role of RNF4-mediated ubiquitination and degradation of PDHA1 in colorectal cancer (CRC) metabolism and metastasis. Integrating (The Cancer Genome Atlas) TCGA and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases, proteomic, clinical, and metabolomic analyses were performed, revealing PDHA1 as a prognostic marker in CRC. Immunohistochemical staining confirmed lower PDHA1 expression in metastatic CRC tissues. In vitro experiments demonstrated that PDHA1 overexpression inhibited CRC cell proliferation, migration, and invasion. RNF4 was identified as a key mediator in the ubiquitination degradation of PDHA1, influencing glycolytic pathways in CRC cells. Metabolomic analysis of serum samples from metastatic CRC patients further supported these findings. In vivo experiments, including xenograft and metastasis models, validated that RNF4 knockdown stabilized PDHA1, inhibiting tumor formation and metastasis. This study highlights the critical role of RNF4-mediated PDHA1 ubiquitination in promoting glycolytic metabolism, proliferation, and metastasis in CRC.
Collapse
Affiliation(s)
- Jierong Chen
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
| | - Zi-Yue Li
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, PR China
| | - Guansheng Zheng
- Department of Clinical Laboratory,Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, PR China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, Guangdong, PR China
| | - Lixue Cao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, PR China
| | - Yun-Miao Guo
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 236 Yuanzhu Road, Zhanjiang, 524045, PR China
| | - Qizhou Lian
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, PR China.
| | - Bing Gu
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China.
| | - Cai-Feng Yue
- Department of Laboratory Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 236 Yuanzhu Road, Zhanjiang, 524045, PR China.
| |
Collapse
|
4
|
Rosspopoff O, Trono D. Take a walk on the KRAB side. Trends Genet 2023; 39:844-857. [PMID: 37716846 DOI: 10.1016/j.tig.2023.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023]
Abstract
Canonical Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) act as major repressors of transposable elements (TEs) via the KRAB-mediated recruitment of the heterochromatin scaffold KRAB-associated protein (KAP)1. KZFP genes emerged some 420 million years ago in the last common ancestor of coelacanth, lungfish, and tetrapods, and dramatically expanded to give rise to lineage-specific repertoires in contemporary species paralleling their TE load and turnover. However, the KRAB domain displays sequence and function variations that reveal repeated diversions from a linear TE-KZFP trajectory. This Review summarizes current knowledge on the evolution of KZFPs and discusses how ancestral noncanonical KZFPs endowed with variant KRAB, SCAN or DUF3669 domains have been utilized to achieve KAP1-independent functions.
Collapse
Affiliation(s)
- Olga Rosspopoff
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Hsu YL, Chen HJ, Gao JX, Yang MY, Fu RH. Chiisanoside Mediates the Parkin/ZNF746/PGC-1α Axis by Downregulating MiR-181a to Improve Mitochondrial Biogenesis in 6-OHDA-Caused Neurotoxicity Models In Vitro and In Vivo: Suggestions for Prevention of Parkinson's Disease. Antioxidants (Basel) 2023; 12:1782. [PMID: 37760085 PMCID: PMC10525196 DOI: 10.3390/antiox12091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The degeneration of dopamine (DA) neurons is known to be associated with defects in mitochondrial biogenesis caused by aging, environmental factors, or mutations in genes, leading to Parkinson's disease (PD). As PD has not yet been successfully cured, the strategy of using small molecule drugs to protect and restore mitochondrial biogenesis is a promising direction. This study evaluated the efficacy of synthetic chiisanoside (CSS) identified in the leaves of Acanthopanax sessiliflorus to prevent PD symptoms. The results show that in the 6-hydroxydopamine (6-OHDA) model, CSS pretreatment can effectively alleviate the reactive oxygen species generation and apoptosis of SH-SY5Y cells, thereby lessening the defects in the C. elegans model including DA neuron degeneration, dopamine-mediated food sensitivity behavioral disorders, and shortened lifespan. Mechanistically, we found that CSS could restore the expression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α), a key molecule in mitochondrial biogenesis, and its downstream related genes inhibited by 6-OHDA. We further confirmed that this is due to the enhanced activity of parkin leading to the ubiquitination and degradation of PGC-1α inhibitor protein Zinc finger protein 746 (ZNF746). Parkin siRNA treatment abolished this effect of CSS. Furthermore, we found that CSS inhibited 6-OHDA-induced expression of miR-181a, which targets parkin. The CSS's ability to reverse the 6-OHDA-induced reduction in mitochondrial biogenesis and activation of apoptosis was abolished after the transfection of anti-miR-181a and miR-181a mimics. Therefore, the neuroprotective effect of CSS mainly promotes mitochondrial biogenesis by regulating the miR-181a/Parkin/ZNF746/PGC-1α axis. CSS potentially has the opportunity to be developed into PD prevention agents.
Collapse
Affiliation(s)
- Yu-Ling Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
| | - Jia-Xin Gao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
| | - Ming-Yang Yang
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan;
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan;
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
6
|
Cell Biology of Parkin: Clues to the Development of New Therapeutics for Parkinson's Disease. CNS Drugs 2022; 36:1249-1267. [PMID: 36378485 DOI: 10.1007/s40263-022-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease and contributes significantly to morbidity globally. Currently, no disease-modifying therapies exist to combat this disorder. Insights from the molecular and cellular pathobiology of the disease seems to indicate promising therapeutic targets. The parkin protein has been extensively studied for its role in autosomal recessive Parkinson's disease and, more recently, its role in sporadic Parkinson's disease. Parkin is an E3 ubiquitin ligase that plays a prominent role in mitochondrial quality control, mitochondrial-dependent cell death pathways, and other diverse functions. Understanding the numerous roles of parkin has introduced many new possibilities for therapeutic modalities in treating both autosomal recessive Parkinson's disease and sporadic Parkinson's disease. In this article, we review parkin biology with an emphasis on mitochondrial-related functions and propose novel, potentially disease-modifying therapeutic approaches for treating this debilitating condition.
Collapse
|
7
|
Nishida T. SUMO-specific protease SENP3 enhances MDM2-mediated ubiquitination of PARIS/ZNF746 in HeLa cells. Biochem Biophys Res Commun 2022; 615:150-156. [PMID: 35623300 DOI: 10.1016/j.bbrc.2022.05.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022]
Abstract
The transcriptional repressor PARIS, a substrate of the ubiquitin E3 ligase parkin, represses the expression of the transcriptional co-activator, PGC-1α gene, and is involved in several pathological processes, including neurodegenerative disease and cancers. We have previously shown that SUMOylation of PARIS play an important role in its transcriptional repression activity. In addition, RNF4-mediated ubiquitination of SUMO2/3-conjugated PARIS is required for the control of PARIS-mediated transcriptional repression in HeLa cells that lack parkin expression. However, little is known about how PARIS ubiquitination and degradation are regulated in parkin-deficient cells. Here, we report that the deSUMOylase SENP3 interacted with PARIS and enhanced the ubiquitination of PARIS independently of its SUMOylation in HeLa cells. SENP3-enhanced PARIS ubiquitination mainly contributed to its proteasomal degradation, and required the oncogenic E3 ubiquitin ligase MDM2. MDM2 knockdown by small interfering RNA or expression of a dominant-negative MDM2 mutant inhibited the ubiquitination of PARIS. We further found that MDM2 activation via the PI3K/AKT pathway was involved in PARIS ubiquitination. Taken together, these results suggest that PARIS ubiquitination through SENP3-mediated MDM2 activation may control its functions in parkin-deficient cells.
Collapse
Affiliation(s)
- Tamotsu Nishida
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, 1577 Kurima-machiya, Tsu, 514-8507, Japan
| |
Collapse
|
8
|
Jeoung SW, Park HS, Ryoo ZY, Cho DH, Lee HS, Ryu HY. SUMOylation and Major Depressive Disorder. Int J Mol Sci 2022; 23:8023. [PMID: 35887370 PMCID: PMC9316168 DOI: 10.3390/ijms23148023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Since the discovery of the small ubiquitin-like modifier (SUMO) protein in 1995, SUMOylation has been considered a crucial post-translational modification in diverse cellular functions. In neurons, SUMOylation has various roles ranging from managing synaptic transmitter release to maintaining mitochondrial integrity and determining neuronal health. It has been discovered that neuronal dysfunction is a key factor in the development of major depressive disorder (MDD). PubMed and Google Scholar databases were searched with keywords such as 'SUMO', 'neuronal plasticity', and 'depression' to obtain relevant scientific literature. Here, we provide an overview of recent studies demonstrating the role of SUMOylation in maintaining neuronal function in participants suffering from MDD.
Collapse
Affiliation(s)
- Seok-Won Jeoung
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 50834, Korea;
| | - Zae Young Ryoo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
9
|
Abu Ahmad Y, Oknin-Vaisman A, Bitman-Lotan E, Orian A. From the Evasion of Degradation to Ubiquitin-Dependent Protein Stabilization. Cells 2021; 10:2374. [PMID: 34572023 PMCID: PMC8469536 DOI: 10.3390/cells10092374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cancer is dysregulated protein turnover (proteostasis), which involves pathologic ubiquitin-dependent degradation of tumor suppressor proteins, as well as increased oncoprotein stabilization. The latter is due, in part, to mutation within sequences, termed degrons, which are required for oncoprotein recognition by the substrate-recognition enzyme, E3 ubiquitin ligase. Stabilization may also result from the inactivation of the enzymatic machinery that mediates the degradation of oncoproteins. Importantly, inactivation in cancer of E3 enzymes that regulates the physiological degradation of oncoproteins, results in tumor cells that accumulate multiple active oncoproteins with prolonged half-lives, leading to the development of "degradation-resistant" cancer cells. In addition, specific sequences may enable ubiquitinated proteins to evade degradation at the 26S proteasome. While the ubiquitin-proteasome pathway was originally discovered as central for protein degradation, in cancer cells a ubiquitin-dependent protein stabilization pathway actively translates transient mitogenic signals into long-lasting protein stabilization and enhances the activity of key oncoproteins. A central enzyme in this pathway is the ubiquitin ligase RNF4. An intimate link connects protein stabilization with tumorigenesis in experimental models as well as in the clinic, suggesting that pharmacological inhibition of protein stabilization has potential for personalized medicine in cancer. In this review, we highlight old observations and recent advances in our knowledge regarding protein stabilization.
Collapse
Affiliation(s)
| | | | | | - Amir Orian
- Rappaport Faculty of Medicine, R-TICC, Technion-IIT, Efron St. Bat-Galim, Haifa 3109610, Israel; (Y.A.A.); (A.O.-V.); (E.B.-L.)
| |
Collapse
|
10
|
Chang YC, Oram MK, Bielinsky AK. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int J Mol Sci 2021; 22:ijms22105391. [PMID: 34065507 PMCID: PMC8161396 DOI: 10.3390/ijms22105391] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)-targeted E3 ubiquitin ligases (STUbLs) are specialized enzymes that recognize SUMOylated proteins and attach ubiquitin to them. They therefore connect the cellular SUMOylation and ubiquitination circuits. STUbLs participate in diverse molecular processes that span cell cycle regulated events, including DNA repair, replication, mitosis, and transcription. They operate during unperturbed conditions and in response to challenges, such as genotoxic stress. These E3 ubiquitin ligases modify their target substrates by catalyzing ubiquitin chains that form different linkages, resulting in proteolytic or non-proteolytic outcomes. Often, STUbLs function in compartmentalized environments, such as the nuclear envelope or kinetochore, and actively aid in nuclear relocalization of damaged DNA and stalled replication forks to promote DNA repair or fork restart. Furthermore, STUbLs reside in the same vicinity as SUMO proteases and deubiquitinases (DUBs), providing spatiotemporal control of their targets. In this review, we focus on the molecular mechanisms by which STUbLs help to maintain genome stability across different species.
Collapse
|
11
|
Zhu J, Wu P, Zeng C, Xue Q. Increased SUMOylation of TCF21 improves its stability and function in human endometriotic stromal cells†. Biol Reprod 2021; 105:128-136. [PMID: 33693540 DOI: 10.1093/biolre/ioab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/08/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is an estrogen-dependent disease. Our previous study demonstrated that elevated levels of transcription factor 21 (TCF21) in endometriotic tissues enhanced steroidogenic factor-1 (SF-1) and estrogen receptor β (ERβ) expression by forming a heterodimer with upstream stimulatory factor 2 (USF2), allowing these TCF21/USF2 complexes to bind to the promoters of SF-1 and ERβ. Furthermore, TCF21 contributed to the increased proliferation of endometriotic stromal cells (ESCs), suggesting that TCF21 may play a vital role in the pathogenesis of endometriosis. SUMOylation is a posttranslational modification that has emerged as a crucial molecular regulatory mechanism. However, the mechanism regulating TCF21 SUMOylation in endometriosis is incompletely characterized. Thus, this study aimed to explore the effect of TCF21 SUMOylation on its expression and regulation in ovarian endometriosis. We found that the levels of SUMOylated TCF21 were increased in endometriotic tissues and stromal cells compared with eutopic endometrial tissues and stromal cells and enhanced by estrogen. Treatment with the SUMOylation inhibitor ginkgolic acid and the results of a protein half-life assay demonstrated that SUMOylation can stabilize the TCF21 protein. A coimmunoprecipitation assay showed that SUMOylation probably increased its interaction with USF2. Further analyses elucidated that SUMOylation of TCF21 significantly increased the binding activity of USF2 to the SF-1 and ERβ promoters. Moreover, the SUMOylation motifs in TCF21 affected the proliferation ability of ESCs. The results of this study suggest that SUMOylation plays a critical role in mediating the high expression of TCF21 in ESCs and may participate in the development of endometriosis.
Collapse
Affiliation(s)
- Jingwen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Peili Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
12
|
He J, Cheng J, Wang T. SUMOylation-Mediated Response to Mitochondrial Stress. Int J Mol Sci 2020; 21:ijms21165657. [PMID: 32781782 PMCID: PMC7460625 DOI: 10.3390/ijms21165657] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial stress is considered as a factor that reprograms the mitochondrial biogenesis and metabolism. As known, SUMOylation occurs through a series of stress-induced biochemical reactions. During the process of SUMOylation, the small ubiquitin-like modifier (SUMO) and its specific proteases (SENPs) are key signal molecules. Furthermore, they are considered as novel mitochondrial stress sensors that respond to the signals produced by various stresses. The responses are critical for mitochondrial homeostasis. The scope of this review is to provide an overview of the function of SUMOylation in the mitochondrial stress response, to delineate a SUMOylation-involved signal network diagram, and to highlight a number of key questions that remain answered.
Collapse
Affiliation(s)
- Jianli He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (J.C.); (T.W.); Tel.: +86-(21)-6384-6590-776327 (J.C.); +86-(21)-6384-6590-778026 (T.W.)
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (J.C.); (T.W.); Tel.: +86-(21)-6384-6590-776327 (J.C.); +86-(21)-6384-6590-778026 (T.W.)
| |
Collapse
|