1
|
Moreschi BP, da Silva Portilho R, Santos AN, Brito IL, Otsubo Jaques JA. Combined oral contraceptives alter ectonucleotidase and adenosine deaminase activities in peripheral blood cells. Purinergic Signal 2025:10.1007/s11302-025-10075-w. [PMID: 40011299 DOI: 10.1007/s11302-025-10075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Hormonal contraceptives, one of the most widely used contraceptive methods, are associated with the development of thromboembolism. Purinergic mediators such as soluble agonists, ectonucleotidases, and receptors play a prominent role in regulating hemostasis. This study aimed to evaluate E-NTPDase, E-5'-NT, and E-ADA activities in lymphocytes and platelets from women using combined oral contraceptives. Participants used third-generation (3G) oral contraceptives, such as drospirenone or cyproterone acetate, or fourth-generation (4G) oral contraceptives, such as gestodene or desogestrel, both combined with ethinylestradiol. The findings indicated decreased adenosine (ADO) deamination in lymphocytes (78%, p < 0.001) and decreased AMP hydrolysis (69%, p < 0.01) and ADO deamination (66%, p < 0.001) in platelets from women using 3G contraceptives compared with the control. Furthermore, the results showed decreased ADO deamination (66%, p < 0.05) in lymphocytes and decreased ATP hydrolysis (52%, p < 0.05) and decreased ADO deamination (57%, p < 0.001) in platelets from women using 4G contraceptives compared with the control. The observed patterns of AMP hydrolysis are compatible with an ADO-poor vascular microenvironment. Likewise, the decrease in E-ADA activity may be associated with lower concentrations of ADO in the vascular microenvironment, which has antiplatelet and anti-inflammatory effects. Overall, the findings demonstrated that hormonal contraceptives alter the activity of purinergic ectoenzymes, which might be related to their effects on hemostasis and a predisposition to thromboembolic events.
Collapse
Affiliation(s)
- Bruna Pache Moreschi
- Biochemistry Sector, Institute of Biosciences, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil
- Graduate Program in Pharmaceutical Sciences, UFMS, Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil
| | - Romário da Silva Portilho
- Biochemistry Sector, Institute of Biosciences, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil
- Graduate Program in Pharmaceutical Sciences, UFMS, Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil
| | - Andreza Negreli Santos
- Biochemistry Sector, Institute of Biosciences, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil
- Multicenter Graduate Program in Biochemistry and Molecular Biology, UFMS, Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil
| | - Igor Leal Brito
- Biochemistry Sector, Institute of Biosciences, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil
- Multicenter Graduate Program in Biochemistry and Molecular Biology, UFMS, Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil
| | - Jeandre Augusto Otsubo Jaques
- Biochemistry Sector, Institute of Biosciences, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil.
- Graduate Program in Pharmaceutical Sciences, UFMS, Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil.
- Multicenter Graduate Program in Biochemistry and Molecular Biology, UFMS, Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil.
| |
Collapse
|
2
|
Stabile J, Fürstenau CR. Platelets isolation and ectonucleotidase assay: Revealing functional aspects of the communication between the vasculature and the immune system. J Immunol Methods 2024; 533:113746. [PMID: 39181235 DOI: 10.1016/j.jim.2024.113746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Platelets are enucleated fragments of cells with a diversity of internal granules. They are responsible for functions related to hemostasis, coagulation, and inflammation. The activation of these processes depends on a cascade coordinated by cytokines, chemokines, and components of purinergic signaling, such as ATP, ADP, and adenosine. Platelets express distinct components of the purinergic system: P2X1, P2Y1, PY12, and P2Y14 receptors; and the ectonucleotidases NTPDase, NPP, and 5NTE (ecto-5'-nucleotidase). Except for P2Y14, which has not yet exhibited a known function, all other components relate to the biological processes mentioned before. Platelets are known to display specific responses to microorganisms, being capable of recognizing pathogen-associated molecular patterns (PAMPs), engulfing certain classes of viruses, and participating in NETosis. Platelet function dysregulation implicates various pathophysiological processes, including cardiovascular diseases (CVDs) and infections. In COVID-19 patients, platelets exhibit altered purinergic signaling and increased activation, contributing to inflammation. Excessive platelet activation can lead to complications from thrombosis, which can affect the circulation of vital organs. Therefore, controlling the activation is necessary to end the inflammatory process and restore homeostasis. Ectonucleotidases, capable of hydrolyzing ATP, ADP, and AMP, are of fundamental importance in activating platelets, promising pharmacological targets for clinical use as cardiovascular protective drugs. In this review, we revisit platelet biology, the purinergic receptors and ectonucleotidases on their surface, and their importance in platelet activity. Additionally, we describe methods for isolating platelets in humans and murine, as well as the main techniques for detecting the activity of ectonucleotidases in platelets. Considering the multitude of functions revealed by platelets and their potential use as potent bioreactors able to secrete and present molecules involved in the communication of the vasculature with the immune system, it is crucial to deeply understand platelet biology and purinergic signaling participation to contribute to the developing of therapeutic strategies in diseases of the cardiovascular, inflammatory, and immune systems.
Collapse
Affiliation(s)
- Jeferson Stabile
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Cristina Ribas Fürstenau
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil.
| |
Collapse
|
3
|
Garcia-Leon MJ, Liboni C, Mittelheisser V, Bochler L, Follain G, Mouriaux C, Busnelli I, Larnicol A, Colin F, Peralta M, Osmani N, Gensbittel V, Bourdon C, Samaniego R, Pichot A, Paul N, Molitor A, Carapito R, Jandrot-Perrus M, Lefebvre O, Mangin PH, Goetz JG. Platelets favor the outgrowth of established metastases. Nat Commun 2024; 15:3297. [PMID: 38740748 DOI: 10.1038/s41467-024-47516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Despite abundant evidence demonstrating that platelets foster metastasis, anti-platelet agents have low therapeutic potential due to the risk of hemorrhages. In addition, whether platelets can regulate metastasis at the late stages of the disease remains unknown. In this study, we subject syngeneic models of metastasis to various thrombocytopenic regimes to show that platelets provide a biphasic contribution to metastasis. While potent intravascular binding of platelets to tumor cells efficiently promotes metastasis, platelets further support the outgrowth of established metastases via immune suppression. Genetic depletion and pharmacological targeting of the glycoprotein VI (GPVI) platelet-specific receptor in humanized mouse models efficiently reduce the growth of established metastases, independently of active platelet binding to tumor cells in the bloodstream. Our study demonstrates therapeutic efficacy when targeting animals bearing growing metastases. It further identifies GPVI as a molecular target whose inhibition can impair metastasis without inducing collateral hemostatic perturbations.
Collapse
Affiliation(s)
- Maria J Garcia-Leon
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
- Domain therapeutics, Parc d'Innovation - 220 Boulevard Gonthier D'Andernach, 67400, Strasbourg - Illkirch, France.
| | - Cristina Liboni
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Vincent Mittelheisser
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Louis Bochler
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Gautier Follain
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Clarisse Mouriaux
- UMR_S 1255, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, F-67000, Strasbourg, France
| | - Ignacio Busnelli
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Annabel Larnicol
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Florent Colin
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Marina Peralta
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Naël Osmani
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Valentin Gensbittel
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Catherine Bourdon
- UMR_S 1255, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, F-67000, Strasbourg, France
| | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Unidad de Microscopía Confocal, Madrid, Spain
| | - Angélique Pichot
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
| | - Nicodème Paul
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
| | - Anne Molitor
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
| | - Raphaël Carapito
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091, Strasbourg, France
| | | | - Olivier Lefebvre
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Pierre H Mangin
- UMR_S 1255, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, F-67000, Strasbourg, France.
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
4
|
NaveenKumar SK, Tambralli A, Fonseca BM, Yalavarthi S, Liang W, Hoy CK, Sarosh C, Rysenga CE, Ranger CH, Vance CE, Madison JA, Orsi FA, Sood SL, Schaefer JK, Zuo Y, Knight JS. Low ectonucleotidase activity and increased neutrophil-platelet aggregates in patients with antiphospholipid syndrome. Blood 2024; 143:1193-1197. [PMID: 38237140 PMCID: PMC10972706 DOI: 10.1182/blood.2023022097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
ABSTRACT Many patients with antiphospholipid syndrome had decreased ectonucleotidase activity on neutrophils and platelets, which enabled extracellular nucleotides to trigger neutrophil-platelet aggregates. This phenotype was replicated by treating healthy neutrophils and platelets with patient-derived antiphospholipid antibodies or ectonucleotidase inhibitors.
Collapse
Affiliation(s)
| | - Ajay Tambralli
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Bruna Mazetto Fonseca
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Hematology and Hemotherapy Center, Department of Pathology, University of Campinas, Campinas, Brazil
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Wenying Liang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Claire K. Hoy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Christine E. Rysenga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Caroline H. Ranger
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Caroline E. Vance
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jacqueline A. Madison
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Fernanda A. Orsi
- Hematology and Hemotherapy Center, Department of Pathology, University of Campinas, Campinas, Brazil
| | - Suman L. Sood
- Division of Hematology & Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jordan K. Schaefer
- Division of Hematology & Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
5
|
Chaurasia SN, Singh V, Ekhlak M, Dash MK, Joshi N, Dash D. Ayurvedic preparations of Raudra Rasa inhibit agonist-mediated platelet activation and restrict thrombogenicity without affecting cell viability. FEBS Open Bio 2023; 13:2342-2355. [PMID: 37787005 PMCID: PMC10699108 DOI: 10.1002/2211-5463.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
Ayurveda is considered to be one of the most ancient forms of medicine still practiced. The Ayurvedic preparation Raudra Rasa and its derivatives have been widely employed against cancer since the 12th century, but the effect of these traditional formulations on platelet function and signaling has not previously been examined. Here we demonstrate that Raudra Rasa and its derivatives significantly reduce thrombin-induced integrin activation and granule secretion in platelets, as observed by reduced PAC-1 binding and P-selectin externalization, respectively. These formulations also inhibited thrombin-stimulated phosphatidylserine exposure, mitochondrial reactive oxygen species generation, and mitochondrial transmembrane potential in platelets. Consistent with the above, Raudra Rasa significantly reduced thrombin-induced tyrosine phosphorylation of the platelet proteins, as well as phosphorylation of the enzymes AKT and GSK-3β. In summary, Raudra Rasa inhibits agonist-mediated platelet activation without affecting cell viability, suggesting it may have therapeutic potential as an anti-platelet/anti-thrombotic agent.
Collapse
Affiliation(s)
- Susheel Nidhi Chaurasia
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Vipin Singh
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Mohammad Ekhlak
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Manoj Kumar Dash
- Department of Rasa Shastra & B KalpanaGovernment Ayurved CollegeRaipurIndia
| | - Namrata Joshi
- Department of Rasa Shastra, Faculty of Ayurveda, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| |
Collapse
|
6
|
Ushiki T, Mochizuki T, Suzuki K, Kamimura M, Ishiguro H, Suwabe T, Watanabe S, Omori G, Yamamoto N, Kawase T. Strategic analysis of body composition indices and resting platelet ATP levels in professional soccer players for better platelet-rich plasma therapy. Front Bioeng Biotechnol 2023; 11:1255860. [PMID: 37711445 PMCID: PMC10499317 DOI: 10.3389/fbioe.2023.1255860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
Background: Autologous platelet-rich plasma (PRP) therapy is ambiguously thought to be more effective in elite athletes than in sedentary patients, although the possible importance of recipient responsiveness remains poorly understood. To address this issue, along with the well-known PRP quality, in this initial study, we evaluated two candidate biomarkers: body composition indices (BCIs), which reflect systemic physical conditions, and resting platelet ATP levels, which reflect platelet energy expenditure and the mass of energy generation units. Methods: In this cross-sectional cohort study, blood samples were collected from male professional soccer players (PSPs) on a local professional team during the off-season and platelet ATP levels were quantified using an ATP luminescence assay kit. BCIs were measured using the body mass impedance method. Age-matched male sedentary participants were used as the controls. Results: Among the BCIs, the body mass index, basal metabolic rate (BMR), and skeletal muscle weight levels were higher in the PSPs than in the controls. The platelet ATP levels in the PSPs group were significantly lower than those in the control group. The correlation between BMR and platelet ATP levels was moderately negative in the control group, but weakly positive in the PSPs group. Conclusion: Owing to regular physical exercise, PSPs had higher BMR levels and lower platelet ATP levels without a significant mutual correlation compared to sedentary controls. This study did not indicate the influence of these biomarkers on the success of PRP therapy but provided evidence for a better understanding of PRP therapy, particularly for elite athletes.
Collapse
Affiliation(s)
- Takashi Ushiki
- Division of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
- Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Tomoharu Mochizuki
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsuya Suzuki
- Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Masami Kamimura
- Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Hajime Ishiguro
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tatsuya Suwabe
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Satoshi Watanabe
- Department of Orthopaedic Surgery, Niigata Medical Center, Niigata, Japan
| | - Go Omori
- Department of Health and Sports, Faculty of Health Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Noriaki Yamamoto
- Department of Orthopaedic Surgery, Niigata Rehabilitation Hospital, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
7
|
Scherlinger M, Richez C, Tsokos GC, Boilard E, Blanco P. The role of platelets in immune-mediated inflammatory diseases. Nat Rev Immunol 2023; 23:495-510. [PMID: 36707719 PMCID: PMC9882748 DOI: 10.1038/s41577-023-00834-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/28/2023]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are characterized by excessive and uncontrolled inflammation and thrombosis, both of which are responsible for organ damage, morbidity and death. Platelets have long been known for their role in primary haemostasis, but they are now also considered to be components of the immune system and to have a central role in the pathogenesis of IMIDs. In patients with IMIDs, platelets are activated by disease-specific factors, and their activation often reflects disease activity. Here we summarize the evidence showing that activated platelets have an active role in the pathogenesis and the progression of IMIDs. Activated platelets produce soluble factors and directly interact with immune cells, thereby promoting an inflammatory phenotype. Furthermore, platelets participate in tissue injury and promote abnormal tissue healing, leading to fibrosis. Targeting platelet activation and targeting the interaction of platelets with the immune system are novel and promising therapeutic strategies in IMIDs.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, Centre de référence des maladies auto-immunes systémiques rares RESO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Laboratoire d'ImmunoRhumatologie Moléculaire UMR_S 1109, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.
| | - Christophe Richez
- Service de Rhumatologie, Centre de référence des maladies auto-immunes systémiques rares RESO, Hôpital Pellegrin, Centre Hospitalier Universitaire, Bordeaux, France
- CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, Bordeaux, France
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche ARThrite, Université Laval, Quebec City, Quebec, Canada
| | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, Bordeaux, France.
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Bordeaux, France.
| |
Collapse
|
8
|
Song H, Yang Y, Li B. Tripeptide Hyp-Asp-Gly from collagen peptides inhibited platelet activation via regulation of PI3K/Akt-MAPK/ERK1/2 signaling pathway. J Food Sci 2022; 87:3279-3293. [PMID: 35703476 DOI: 10.1111/1750-3841.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Platelet activation is involved in cardiovascular thrombosis. Our previous study demonstrated that oral administration of collagen peptides (CPs) inhibited platelet activation, but the mechanism of action of CPs remained to be elucidated. As a continued effort, the objective of this study was to identify the active ingredient of CPs and clarify its molecular mechanism. Simulated absorbate of CPs was prepared by simulated gastrointestinal digestion and intestinal absorption system, and then separated by C18 column. The fraction with the highest antiplatelet activity was subjected to NanoUPLC-ESI-MS/MS for peptide sequencing. Novel tripeptide Hyp-Asp-Gly (ODG) was identified. It had a broad-spectrum inhibition of platelet activation induced by collagen, thrombin, and adenosine diphosphate (ADP). ODG could survive simulated gastrointestinal digestion and be absorbed intact. Furthermore, it showed good stability in plasma. ODG had no significant effect on the PLC-PKC-Ca2+ pathway, but it inhibited the PI3K/Akt-MAPK/ERK1/2 signaling. At a dosage of 200 µmol/kg body weight, ODG had an in vivo anti-thrombosis activity without bleeding risk. The present study provides one of the mechanisms of action of CPs and highlights its potential use as a functional component to combat cardiovascular thrombosis. PRACTICAL APPLICATION: This study has suggested that tripeptide Hyp-Asp-Gly(ODG) derived from collagen have potent activities. This novel collagen peptide had a greatpotential to be applied to combat cardiovascular thrombosis in the foodindustry. Meanwhile, this work is expected to provide a theoretical basis forthe development of safe and effective anti-platelet and anti-thrombosis peptides.
Collapse
Affiliation(s)
- Hongdong Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yijie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Thrombo-Inflammation: A Focus on NTPDase1/CD39. Cells 2021; 10:cells10092223. [PMID: 34571872 PMCID: PMC8469976 DOI: 10.3390/cells10092223] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence for a link between inflammation and thrombosis. Following tissue injury, vascular endothelium becomes activated, losing its antithrombotic properties whereas inflammatory mediators build up a prothrombotic environment. Platelets are the first elements to be activated following endothelial damage; they participate in physiological haemostasis, but also in inflammatory and thrombotic events occurring in an injured tissue. While physiological haemostasis develops rapidly to prevent excessive blood loss in the endothelium activated by inflammation, hypoxia or by altered blood flow, thrombosis develops slowly. Activated platelets release the content of their granules, including ATP and ADP released from their dense granules. Ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39 dephosphorylates ATP to ADP and to AMP, which in turn, is hydrolysed to adenosine by ecto-5'-nucleotidase (CD73). NTPDase1/CD39 has emerged has an important molecule in the vasculature and on platelet surfaces; it limits thrombotic events and contributes to maintain the antithrombotic properties of endothelium. The aim of the present review is to provide an overview of platelets as cellular elements interfacing haemostasis and inflammation, with a particular focus on the emerging role of NTPDase1/CD39 in controlling both processes.
Collapse
|
10
|
Kyselova A, Siragusa M, Anthes J, Solari FA, Loroch S, Zahedi RP, Walter U, Fleming I, Randriamboavonjy V. Cyclin Y is expressed in Platelets and Modulates Integrin Outside-in Signaling. Int J Mol Sci 2020; 21:ijms21218239. [PMID: 33153214 PMCID: PMC7662234 DOI: 10.3390/ijms21218239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetes is associated with platelet hyper-reactivity and enhanced risk of thrombosis development. Here we compared protein expression in platelets from healthy donors and diabetic patients to identify differentially expressed proteins and their possible function in platelet activation. Mass spectrometry analyses identified cyclin Y (CCNY) in platelets and its reduced expression in platelets from diabetic patients, a phenomenon that could be attributed to the increased activity of calpains. To determine the role of CCNY in platelets, mice globally lacking the protein were studied. CCNY-/- mice demonstrated lower numbers of circulating platelets but platelet responsiveness to thrombin and a thromboxane A2 analogue were comparable with that of wild-type mice, as was agonist-induced α and dense granule secretion. CCNY-deficient platelets demonstrated enhanced adhesion to fibronectin and collagen as well as an attenuated spreading and clot retraction, indicating an alteration in "outside in" integrin signalling. This phenotype was accompanied by a significant reduction in the agonist-induced tyrosine phosphorylation of β3 integrin. Taken together we have shown that CCNY is present in anucleated platelets where it is involved in the regulation of integrin-mediated outside in signalling associated with thrombin stimulation.
Collapse
Affiliation(s)
- Anastasia Kyselova
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
| | - Mauro Siragusa
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
| | - Julian Anthes
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
| | - Fiorella Andrea Solari
- Leibniz–Institute for Analytical Sciences (ISAS)- e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany;
| | - Stefan Loroch
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
- Leibniz–Institute for Analytical Sciences (ISAS)- e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany;
| | - René P. Zahedi
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
- Leibniz–Institute for Analytical Sciences (ISAS)- e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany;
| | - Ulrich Walter
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
- Correspondence: ; Tel.: +49-69-6301-6973; Fax: +49-69-6301-86880
| |
Collapse
|
11
|
Zeng J, Ning Z, Wang Y, Xiong H. Implications of CD39 in immune-related diseases. Int Immunopharmacol 2020; 89:107055. [PMID: 33045579 DOI: 10.1016/j.intimp.2020.107055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
Extracellular adenosine triphosphate (eATP) mediates pro-inflammatory responses by recruiting and activating inflammatory cells. CD39 can hydrolyze eATP into adenosine monophosphate (AMP), while CD73 can convert AMP into the immunosuppressive nucleoside adenosine (ADO). CD39 is a rate-limiting enzyme in this cascade, which is regarded as an immunological switch shifting the ATP-mediated pro-inflammatory environment to the ADO- mediated anti-inflammatory status. The CD39 expression can be detected in a wide spectrum of immunocytes, which is under the influence of environmental and genetic factors. It is increasingly suggested that, CD39 participates in some pathophysiological processes, like inflammatory bowel disease (IBD), sepsis, multiple sclerosis (MS), allergic diseases, ischemia-reperfusion (I/R) injury, systemic lupus erythematosus (SLE), diabetes and cancer. Here, we focus on the current understanding of CD39 in immunity, and comprehensively illustrate the diverse CD39 functions within a variety of disorders.
Collapse
Affiliation(s)
- Jianrui Zeng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Yuzhong Wang
- Department of Neurology and Central Laboratory, Affiliated Hospital of Jining Medical University, Shandong 272000, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China.
| |
Collapse
|