1
|
He M, Chen S, Yu H, Fan X, Wu H, Wang Y, Wang H, Yin X. Advances in nanoparticle-based radiotherapy for cancer treatment. iScience 2025; 28:111602. [PMID: 39834854 PMCID: PMC11743923 DOI: 10.1016/j.isci.2024.111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Radiotherapy has long been recognized as an effective conventional approach in both clinical and scientific research, primarily through mechanisms involving DNA destruction or the generation of reactive oxygen species to target tumors. However, significant challenges persist, including the unavoidable damage to normal tissues and the development of radiation resistance. As a result, nanotechnology-based radiotherapy has garnered considerable attention for its potential to enhance precision in irradiation, improve radiosensitization, and achieve therapeutic advancements. Importantly, radiotherapy alone frequently falls short of fully eradicating tumors. Consequently, to augment the efficacy of radiotherapy, it is often integrated with other therapeutic strategies. This review elucidates the mechanisms of radiotherapy sensitization based on diverse nanoparticles. Typically, radiotherapy is sensitized through augmenting reactive oxygen species production, targeted radiotherapy, hypoxia relief, enhancement of antitumor immune microenvironment, and G2/M cell cycle arrest. Moreover, the incorporation of nanoparticle-based anti-tumor strategies with radiotherapy markedly enhances the current state of radiotherapy. Additionally, a compilation of clinical trials utilizing nano-radioenhancers is presented. Finally, future prospects for clinical translation in this field are thoroughly examined.
Collapse
Affiliation(s)
- Meijuan He
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shixiong Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xuhui Fan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong Wu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yihui Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
- Jiading Branch of Shanghai General Hospital, Shanghai 201803, China
| | - Xiaorui Yin
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
2
|
Wang S, Han J, Wang Z, Liu X, Wang C, Nisar MF, Pan L, Xu K. Targeted Therapy of Tumors and Cancer Stem Cells based on Oxidant-regulated Redox Pathway and its Mechanism. Curr Comput Aided Drug Des 2025; 21:425-440. [PMID: 38818918 DOI: 10.2174/0115734099299174240522115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024]
Abstract
A malignant tumor is a frequent and common disease that severely threatens human health. Many mechanisms, such as cell signaling pathway, anti-apoptosis mechanism, cell stemness, metabolism, and cell phenotype, have been studied to explain the reasons for chemotherapy, radioresistance, and tumor recurrences in antitumor treatment. Cancer stem cells (CSCs) are important tumor cell subclasses that can potentially organize and regulate stem cell properties. Growing evidence suggests that CSCs can initiate tumors and constitute a significant factor in metastasis, recurrence, and treatment resistance. The inability to completely target and remove CSCs is a considerable obstacle in tumor treatment. Therefore, drugs and therapeutic strategies that can effectively intervene with CSCs are essential for the treatment of different tumor types. However, the current strategies and efficacy of targeted elimination of CSCs are very limited. Oxidative stress has been recognized to play a crucial role in cancer pathophysiology. Moreover, reactive oxygen species (ROS) production and imbalance of the built-in cellular antioxidant defense system are hallmarks of tumor and cancer etiology. The current paper will focus on the regulation and mechanism behind oxidative stress in tumors and cancer stem cells and its tumor therapy applications. Additionally, the article discusses the role of CSCs in causing tumor treatment resistance and recurrence based on a redox perspective. The study also emphasizes that targeted modulation of oxidative stress in CSCs has great potential in tumor therapy, providing novel prospects for tumor therapy.
Collapse
Affiliation(s)
- Shunshun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Juanjuan Han
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zijun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xianqiong Liu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chunli Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Lianhong Pan
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, 400030, China
| | - Kang Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
3
|
Hasan AEZ, Julistiono H, Bermawie N, Riyanti EI, Arifni FR. Soursop leaves (Annona muricata L.) endophytic fungi anticancer activity against HeLa cells. Saudi J Biol Sci 2022; 29:103354. [PMID: 35813114 PMCID: PMC9256652 DOI: 10.1016/j.sjbs.2022.103354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
|
4
|
Bindu GSS, Thekkekkara D, Narayanan TL, Narayanan J, Chalasani SH, Manjula SN. The Role of TGF-β in Cognitive Decline Associated with Radiotherapy in Brain Tumor. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cognitive decline is a late adverse event in brain tumor survivors. The patients receiving radiation treatment exhibit a wide range of damage and impairment in attention, memory, and executive function compared to the untreated group. After radiation treatment, various changes are observed in astrocytes, oligodendrocytes, white matter, and vasculature. The major affected areas are the hippocampus and prefrontal cortex. Neurogenesis impairment is one of the primary mechanisms responsible for cognitive dysfunction. Various cytokines and growth factors are responsible for inducing apoptosis of neural cells, which results in impaired neurogenesis in response to radiotherapy. Transforming growth factor (TGF-β) is one of the key cytokines released in response to radiation. TGF-β plays a major role in neuronal apoptosis through various pathways such as the MAP kinase pathway, JAK/STAT pathway, and protein kinase pathway. In contrast, activation of the ALK5 pathway via TGF-β improves neurogenesis. So, the current review article focuses on the detailed effects of TGF-β on neuronal cells concerning radiation exposure. This in-depth knowledge will help researchers focus more on the TGF-β pathway and come up with new treatment schedules which will help reduce cognitive dysfunctions in brain tumor patients produced as a result of radiation therapy.
Collapse
Affiliation(s)
- G. S. Swarna Bindu
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysuru, Karnataka, India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysuru, Karnataka, India
| | - T. Lakshmi Narayanan
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysuru, Karnataka, India
| | - Jiju Narayanan
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysuru, Karnataka, India
| | - Sri Harsha Chalasani
- Department of Pharmacy Practice, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysuru, Karnataka, India
| | - S. N. Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysuru, Karnataka, India
| |
Collapse
|
5
|
Qiu W, Jiang J, Zhan Z, Huang L, Deng J, Ye J, Li G, Liao K, Zhang H, Ding Y, Yuan Y, Zheng R. Prognostic impact of pretreatment serum superoxide dismutase activity in patients with locoregionally advanced nasopharyngeal carcinoma. Int J Biol Markers 2022; 37:21-30. [PMID: 35099330 DOI: 10.1177/17246008221075042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
PURPOSE To evaluate the prognostic effect of pretreatment serum superoxide dismutase (SOD) activity in locoregionally advanced nasopharyngeal carcinoma. METHODS A total of 498 patients diagnosed with stage III-IVA nasopharyngeal carcinoma between January 2013 and December 2016 were involved in this study. The X-tile program was used to determine the cut-off value of pretreatment serum SOD activity based on disease-free survival. Kaplan-Meier methods and Cox proportional hazards models were used to evaluate the impact of serum SOD levels on survival outcomes. The receiver operating characteristic (ROC) curve analysis was used to compare the prognostic value of clinical stage, pretreatment serum SOD level, and the combination of them regarding disease-free survival. RESULTS Based on the X-tile plot, the optimal cutoff value of pretreatment serum SOD activity for disease-free survival was 146.0U/mL. As a dichotomous variable, SOD was significantly higher in non-keratinizing differentiated disease (P = 0.027) and early T stage (P = 0.011). Compared with the lower subset, higher SOD activity predicted an inferior 3-year rates of overall survival (84.6 vs. 94.7%, P < 0.001), distant metastasis-free survival (78.3 vs. 92.8%, P < 0.001) and disease-free survival (78.2 vs. 92.8%, P < 0.001). Multivariate analysis verified that the SOD activity was an independent prognostic indicator to predict distant metastasis, disease progression, and death. The area under the ROC curve (AUC) of the combination was superior to that of clinical stage or SOD alone for disease-free survival (both P < 0.01). CONCLUSION Serological SOD activity before treatment is an important prognostic indicator for patients with stage III-IV non-metastatic nasopharyngeal carcinoma undergoing chemoradiation therapy.
Collapse
Affiliation(s)
- Wenze Qiu
- Department of Radiation Oncology, 198153Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Jiali Jiang
- Health Ward, 74669Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Zejiang Zhan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 71067Sun Yat-sen University Cancer Center, Guangzhou, PR China.,Department of Nasopharyngeal Carcinoma, 71067Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Laiji Huang
- Department of Radiation Oncology, 198153Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Jin Deng
- Department of Radiation Oncology, 198153Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Jiacai Ye
- Department of Radiation Oncology, 198153Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Guo Li
- Department of Radiation Oncology, 198153Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Kai Liao
- Department of Radiation Oncology, 198153Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Huanhuan Zhang
- Department of Radiation Oncology, 198153Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Yan Ding
- Department of Radiation Oncology, 198153Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Yawei Yuan
- Department of Radiation Oncology, 198153Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Ronghui Zheng
- Department of Radiation Oncology, 198153Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
6
|
ROS Pleiotropy in Melanoma and Local Therapy with Physical Modalities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6816214. [PMID: 34777692 PMCID: PMC8580636 DOI: 10.1155/2021/6816214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Metabolic energy production naturally generates unwanted products such as reactive oxygen species (ROS), causing oxidative damage. Oxidative damage has been linked to several pathologies, including diabetes, premature aging, neurodegenerative diseases, and cancer. ROS were therefore originally anticipated as an imperative evil, a product of an imperfect system. More recently, however, the role of ROS in signaling and tumor treatment is increasingly acknowledged. This review addresses the main types, sources, and pathways of ROS in melanoma by linking their pleiotropic roles in antioxidant and oxidant regulation, hypoxia, metabolism, and cell death. In addition, the implications of ROS in various physical therapy modalities targeting melanoma, such as radiotherapy, electrochemotherapy, hyperthermia, photodynamic therapy, and medical gas plasma, are also discussed. By including ROS in the main picture of melanoma skin cancer and as an integral part of cancer therapies, a greater understanding of melanoma cell biology is presented, which ultimately may elucidate additional clues on targeting therapy resistance of this most deadly form of skin cancer.
Collapse
|
7
|
Li HL, Deng NH, Xiao JX, He XS. Cross-link between ferroptosis and nasopharyngeal carcinoma: New approach to radiotherapy sensitization. Oncol Lett 2021; 22:770. [PMID: 34589149 PMCID: PMC8442204 DOI: 10.3892/ol.2021.13031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a recently discovered special type of regulated cell death that is strongly associated with both homeostasis maintenance and cancer development. Previous studies have indicated that a number of small-molecular agents inducing ferroptosis have great potential in the treatment of different types of cancer, including breast, pancreatic, prostate and head and neck cancer. However, the role of ferroptosis in nasopharyngeal carcinoma (NPC) has remained to be fully determined. To the best of our knowledge, no review of the currently available studies on this subject has been published to date. The metabolism and expression of specific genes that regulate ferroptosis may represent a promising radiosensitization target in cancer treatment. The aim of the present review was to describe the cross-link between ferroptosis and NPC and to discuss the potential value of regulators and the possible mechanism underlying the role of ferroptosis in the radiosensitization of NPC, in the hope that linking the mechanism of ferroptosis with the development of NPC will accelerate the development of novel ferroptosis-based targets and radiotherapy strategies in NPC.
Collapse
Affiliation(s)
- Hai-Long Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Nian-Hua Deng
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jia-Xin Xiao
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiu-Sheng He
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
8
|
Huang R, Chen H, Liang J, Li Y, Yang J, Luo C, Tang Y, Ding Y, Liu X, Yuan Q, Yu H, Ye Y, Xu W, Xie X. Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy. J Cancer 2021; 12:5543-5561. [PMID: 34405016 PMCID: PMC8364652 DOI: 10.7150/jca.54699] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) play a dual role in the initiation, development, suppression, and treatment of cancer. Excess ROS can induce nuclear DNA, leading to cancer initiation. Not only that, but ROS also inhibit T cells and natural killer cells and promote the recruitment and M2 polarization of macrophages; consequently, cancer cells escape immune surveillance and immune defense. Furthermore, ROS promote tumor invasion and metastasis by triggering epithelial-mesenchymal transition in tumor cells. Interestingly, massive accumulation of ROS inhibits tumor growth in two ways: (1) by blocking cancer cell proliferation by suppressing the proliferation signaling pathway, cell cycle, and the biosynthesis of nucleotides and ATP and (2) by inducing cancer cell death via activating endoplasmic reticulum stress-, mitochondrial-, and P53- apoptotic pathways and the ferroptosis pathway. Unfortunately, cancer cells can adapt to ROS via a self-adaption system. This review highlighted the bidirectional regulation of ROS in cancer. The study further discussed the application of massively accumulated ROS in cancer treatment. Of note, the dual role of ROS in cancer and the self-adaptive ability of cancer cells should be taken into consideration for cancer prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xiang Xie
- Public Center of Experimental Technology, The school of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
9
|
Song N, Ma J, Hu W, Guo Y, Hui L, Aamer M, Ma J. Lappaconitine hydrochloride inhibits proliferation and induces apoptosis in human colon cancer HCT-116 cells via mitochondrial and MAPK pathway. Acta Histochem 2021; 123:151736. [PMID: 34058516 DOI: 10.1016/j.acthis.2021.151736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Lappaconitine hydrochloride (LH), as a new synthetic alkaloid, exhibits antitumor activity, whereas its antitumor effect on colorectal cancer (CRC) has not been investigated. In this study, the effect of LH on HCT-116 cell proliferation and apoptosis in vivo and in vitro and underlying molecular mechanism were explored. The Cell Counting Kit-8 (CCK-8) was used to assess cell viability. Morphological change was observed by Hoechst 33342 staining. Cell cycle and apoptosis were performed using a flow cytometer. The western blot method was used to screen for related protein expression. The mitochondrial membrane potential (MMP) was confirmed using the 5, 5, 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimi-dazolyl carbo cyanine iodide (JC-1) staining assay. Reactive oxygen species (ROS) was evaluated by a 20-70-dichlorofluorescein diacetate (DCFH-DA) staining assay. The antitumor effect was evaluated in vivo by the xenograft HCT-116 model. The results showed that LH significantly inhibited cell viability in a time- and concentration-dependent manner. LH induced apoptosis and S phase cell cycle arrest. LH promoted the reduction of MMP and ROS accumulation. Moreover, LH activated the mitochondrial and MAPK pathway. The experiments in vivo showed that LH had significant antitumor effect in tumor-bearing mice, and had virtually no effect on the weight and internal organs of the mice. In conclusion, LH could induce apoptosis in HCT-116 cells through mitochondrial and MAPK signaling pathways. LH may be a promising treatment for CRC.
Collapse
Affiliation(s)
- Na Song
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Junyi Ma
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China.
| | - Wei Hu
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yongyue Guo
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Ling Hui
- Gansu Province Center of Medical Genetics, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, 730070, China.
| | - Mohamed Aamer
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Jun Ma
- Key Laboratory of Stem Cells and Gene Drug of Gansu Provincial, The 940(th) Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu, 730070, China
| |
Collapse
|
10
|
Abdelgawad IY, Sadak KT, Lone DW, Dabour MS, Niedernhofer LJ, Zordoky BN. Molecular mechanisms and cardiovascular implications of cancer therapy-induced senescence. Pharmacol Ther 2021; 221:107751. [PMID: 33275998 PMCID: PMC8084867 DOI: 10.1016/j.pharmthera.2020.107751] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Cancer treatment has been associated with accelerated aging that can lead to early-onset health complications typically experienced by older populations. In particular, cancer survivors have an increased risk of developing premature cardiovascular complications. In the last two decades, cellular senescence has been proposed as an important mechanism of premature cardiovascular diseases. Cancer treatments, specifically anthracyclines and radiation, have been shown to induce senescence in different types of cardiovascular cells. Additionally, clinical studies identified increased systemic markers of senescence in cancer survivors. Preclinical research has demonstrated the potential of several approaches to mitigate cancer therapy-induced senescence. However, strategies to prevent and/or treat therapy-induced cardiovascular senescence have not yet been translated to the clinic. In this review, we will discuss how therapy-induced senescence can contribute to cardiovascular complications. Thereafter, we will summarize the current in vitro, in vivo, and clinical evidence regarding cancer therapy-induced cardiovascular senescence. Then, we will discuss interventional strategies that have the potential to protect against therapy-induced cardiovascular senescence. To conclude, we will highlight challenges and future research directions to mitigate therapy-induced cardiovascular senescence in cancer survivors.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - Karim T Sadak
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55455, USA; University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Diana W Lone
- University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55455, USA
| | - Mohamed S Dabour
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Synthesis and in vitro and in vivo biological evaluation of novel derivatives of flexicaulin A as antiproliferative agents. Eur J Med Chem 2020; 208:112789. [PMID: 32883640 DOI: 10.1016/j.ejmech.2020.112789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022]
Abstract
As our research focuses on anticancer drugs, a series of novel derivatives of flexicaulin A (FA), an ent-kaurene diterpene, condensed with an aromatic ring were synthesized, and their antiproliferative activities against four human cancer cell lines (TE-1, EC109, MCF-7, and MGC-803) were evaluated. The activities of most of the new compounds were better than those of FA. Compound 2y exhibited the best activity with an IC50 value reaching 0.13 μM against oesophageal cancer cells (EC109 cells). The IC50 values for 2y in normal cells (GES-1 cells and HUVECs) were 0.52 μM and 0.49 μM, respectively. Subsequent mechanistic investigations found that compound 2y can inhibit the proliferation of cancer cells and cell cloning. In addition, 2y could reduce the mitochondrial membrane potential, increase the apoptosis rate, and increase the ROS level in EC109 cells. Moreover, 2y can upregulate the expression of ROS/JNK pathway-related proteins (p-ASK1, p-MKK4, p-JNK, and p-Cjun (ser63)) and pro-apoptotic proteins (Bax, Bad, and Bim). In vivo experiments showed that 2y can inhibit tumour growth in nude mice. The mechanism involves an increase in protein expression in the ROS pathway, leading to changes in apoptosis-related proteins. In addition, compound 2y shows low toxicity. These results indicate that compound 2y holds promising potential as an antiproliferative agent.
Collapse
|