1
|
Wen M, Guo X, Zhang J, Li Y, Li J, Fan Z, Ren W. Non-coding RNA in cartilage regeneration: regulatory mechanism and therapeutic strategies. Front Bioeng Biotechnol 2025; 13:1522303. [PMID: 40206827 PMCID: PMC11979253 DOI: 10.3389/fbioe.2025.1522303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
The pathogenesis of cartilage injury and degeneration is exceptionally complex. In addition to being associated with osteoarthritis and trauma, factors such as age, gender, obesity, inflammation, and apoptosis of chondrocytes are also considered significant influencing factors. Due to the lack of direct blood supply, lymphatic circulation, and neural innervation, coupled with low metabolic activity, the self-repair capability of cartilage after injury is extremely limited, making its treatment quite challenging. Recent research indicated that ncRNA, a class of RNA transcribed from the genome that does not encode proteins, played a crucial regulatory role in various disease processes. Particularly noteworthy is its positive regulatory role in cartilage regeneration, achieved through the modulation of the inflammatory microenvironment, promotion of chondrocyte proliferation, inhibition of chondrocyte degradation, and facilitation of the recruitment and differentiation of bone marrow mesenchymal stem cells into chondrocytes. In the earlier phase, we conducted a review and outlook on therapeutic strategies for the regeneration of articular cartilage injuries. This article specifically focuses on summarizing the regulatory roles and research advancements of ncRNA in cartilage regeneration, as well as its contributions to the clinical application of gene therapy for cartilage defects.
Collapse
Affiliation(s)
- Mengnan Wen
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xueqiang Guo
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Jingdi Zhang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yunian Li
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jixiang Li
- Junji College of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Wenjie Ren
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Costa V, Terrando S, Bellavia D, Salvatore C, Alessandro R, Giavaresi G. MiR203a-3p as a potential biomarker for synovial pathology associated with osteoarthritis: a pilot study. J Orthop Surg Res 2024; 19:746. [PMID: 39533317 PMCID: PMC11558974 DOI: 10.1186/s13018-024-05237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative musculoskeletal disease that significantly impacts the quality of life. Currently, no validated biomarkers for early detection of OA are defined. The possibility of discovering OA biomarkers is the focus of this study. METHODS Human primary OA synovial cells (SVs), isolated from discarded joint tissue of patients with Kellgren & Lawrence score (KL) < 3, (mild/moderate) and KL ≥ 3 (severe), were characterized by FACS analysis. Through qRT-PCR and ELISA assays the inflammation, fibrosis status and the different miRNAs expression has been investigated. The role of miR-203a-3p and its precursors were evaluated through gain and loss of function study, IL-1β synoviocytes treatments and methylation analysis of miR203a promoter. The qRT-PCR analysis of miR203a-3p and pre-miR203a on plasma (isolated 24 h before surgery, 3 days and 1 month after surgery) and synovial fluid (recovered during the surgery) were done to support our in vitro data. RESULTS MiR203a-3p expression is inversely correlated with the aggressiveness of OA, modulating the expression of epithelial to mesenchymal transition (EMT) and pro-inflammatory factors, as well as regulating the expression of secreted protein acidic and rich in cysteine (SPARC) mRNA. Methylation analysis of the miR203a promoter and SVs IL-1β treatment's highlighted the impact of inflammation on miR203a-3p and pre-miR203a expression; as confirmed by both miRNAs detection in biological fluids derived from patients with severe OA. CONCLUSION Our preliminary results suggest that miR-203a-3p might be a potential candidate for staging OA progression and a new protective/predictive biomarker for synovial OA degeneration. Further studies are needed to validate its potential impact on OA.
Collapse
Affiliation(s)
- Viviana Costa
- Scienze E Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Silvio Terrando
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Daniele Bellavia
- Scienze E Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy.
| | - Caruccio Salvatore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, University of Palermo, 90133, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133, Palermo, Italy
- Istituto Per La Ricerca E L'Innovazione Biomedica (IRIB-CNR), 90133, Palermo, Italy
| | - Gianluca Giavaresi
- Scienze E Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
3
|
Zhao X, Liu S, Yang Z, Li Y. Molecular mechanisms and genetic factors contributing to the developmental dysplasia of the hip. Front Genet 2024; 15:1413500. [PMID: 39156961 PMCID: PMC11327038 DOI: 10.3389/fgene.2024.1413500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
The most prevalent hip disease in neonates is developmental dysplasia of the hip (DDH). A timely and accurate diagnosis is required to provide the most effective treatment for pediatric patients with DDH. Heredity and gene variation have been the subject of increased attention and research worldwide as one of the factors contributing to the pathogenesis of DDH. Genome-wide association studies (GWAS), genome-wide linkage analyses (GWLA), and exome sequencing (ES) have identified variants in numerous genes and single-nucleotide polymorphisms (SNPs) as being associated with susceptibility to DDH in sporadic and DDH family patients. Furthermore, the DDH phenotype can be observed in animal models that exhibit susceptibility genes or loci, including variants in CX3CR1, KANSL1, and GDF5. The dentification of noncoding RNAs and de novo gene variants in patients with DDH-related syndrome has enhanced our understanding of the genes implicated in DDH. This article reviews the most recent molecular mechanisms and genetic factors that contribute to DDH.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Department of Pediatric Orthopaedics, Shenyang Orthopaedic Hospital, Shenyang, China
| | - Shuai Liu
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zhang L, Zhang H, Xie Q, Feng H, Li H, Li Z, Yang K, Ding J, Gao G. LncRNA-mediated cartilage homeostasis in osteoarthritis: a narrative review. Front Med (Lausanne) 2024; 11:1326843. [PMID: 38449881 PMCID: PMC10915071 DOI: 10.3389/fmed.2024.1326843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of cartilage that affects the quality of life and has increased in morbidity and mortality in recent years. Cartilage homeostasis and dysregulation are thought to be important mechanisms involved in the development of OA. Many studies suggest that lncRNAs are involved in cartilage homeostasis in OA and that lncRNAs can be used to diagnose or treat OA. Among the existing therapeutic regimens, lncRNAs are involved in drug-and nondrug-mediated therapeutic mechanisms and are expected to improve the mechanism of adverse effects or drug resistance. Moreover, targeted lncRNA therapy may also prevent or treat OA. The purpose of this review is to summarize the links between lncRNAs and cartilage homeostasis in OA. In addition, we review the potential applications of lncRNAs at multiple levels of adjuvant and targeted therapies. This review highlights that targeting lncRNAs may be a novel therapeutic strategy for improving and modulating cartilage homeostasis in OA patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Qian Xie
- The Third Clinical Medicine School, Nanchang University, Nanchang, China
| | - Haiqi Feng
- Queen Mary School, Nanchang University, Nanchang, China
| | - Haoying Li
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kangping Yang
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Jiatong Ding
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Guicheng Gao
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Nagaraj S, Stankiewicz-Drogon A, Darzynkiewicz E, Wojda U, Grzela R. miR-483-5p orchestrates the initiation of protein synthesis by facilitating the decrease in phosphorylated Ser209eIF4E and 4E-BP1 levels. Sci Rep 2024; 14:4237. [PMID: 38378793 PMCID: PMC10879198 DOI: 10.1038/s41598-024-54154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Eukaryotic initiation factor 4E (eIF4E) is a pivotal protein involved in the regulatory mechanism for global protein synthesis in both physiological and pathological conditions. MicroRNAs (miRNAs) play a significant role in regulating gene expression by targeting mRNA. However, the ability of miRNAs to regulate eIF4E and its phosphorylation remains relatively unknown. In this study, we predicted and experimentally verified targets for miR-483-5p, including eukaryotic translation initiation factor eIF4E and its binding proteins, 4E-BPs, that regulate protein synthesis. Using the Web of Science database, we identified 28 experimentally verified miR-483-5p targets, and by the TargetScan database, we found 1818 predicted mRNA targets, including EIF4E, EIF4EBP1, and EIF4EBP2. We verified that miR-483-5p significantly reduced ERK1 and MKNK1 mRNA levels in HEK293 cells. Furthermore, we discovered that miR-483-5p suppressed EIF4EBP1 and EIF4EBP2, but not EIF4E. Finally, we found that miR-483-5p reduced the level of phosphorylated eIF4E (pSer209eIF4E) but not total eIF4E. In conclusion, our study suggests that miR-483-5p's multi-targeting effect on the ERK1/ MKNK1 axis modulates the phosphorylation state of eIF4E. Unlike siRNA, miRNA can have multiple targets in the pathway, and thereby exploring the role of miR-483-5p in various cancer models may uncover therapeutic options.
Collapse
Affiliation(s)
- Siranjeevi Nagaraj
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Edward Darzynkiewicz
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland.
| | - Renata Grzela
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland.
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| |
Collapse
|
6
|
Shi D, Mei Y, Hao W, Li J, Liu S, Lin X. Biological functions and applications of LncRNAs in the regulation of the extracellular matrix in osteoarthritis. Front Cell Dev Biol 2024; 11:1330624. [PMID: 38259516 PMCID: PMC10800956 DOI: 10.3389/fcell.2023.1330624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Osteoarthritis (OA) is a major cause of disability, characterized by chronic pain, irreversible destruction, and loss of function of the articular cartilage. The integrity and arrangement of the composition and structure of the extracellular matrix (ECM) are essential for maintaining the elasticity, integrity, and mechanical support function of the cartilage tissue. Osteoarthritis causes substantial changes in the ECM, driving the progression of the disease. Recent studies have shown that the ECM plays a critical role in the development of cartilage tissue as well as the occurrence and development of osteoarthritis by directly or indirectly regulating chondrocyte proliferation, apoptosis, differentiation, and gene expression. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs derived from large transcripts. Mutations and disorders of lncRNAs are closely related to the development of osteoarthritis. Abnormal expression of lncRNAs in osteoarthritic cartilage regulates the synthesis and decomposition of the cartilaginous ECM. Therefore, the use of lncRNAs as nucleic acid drugs that regulate their targets may reduce ECM degradation, thereby delaying the pathological progression of osteoarthritis. In this review, the regulatory effects of lncRNAs on ECM in different cell behaviors related to OA are summarized. The roles of lncRNAs in the proliferation, apoptosis, differentiation, and ECM-related gene activity of chondrocytes, as well as the application of lncRNAs as potential gene therapy drugs for the repair and regeneration of osteoarthritic tissue, are also reviewed. A better understanding of the roles of lncRNAs in guiding chondrocyte behavior and ECM metabolism is critical for their future applications in osteoarthritis therapy and regenerative medicine.
Collapse
Affiliation(s)
- Di Shi
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Yufeng Mei
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wan Hao
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jun Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiao Lin
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| |
Collapse
|
7
|
Ni R, Liu H, Song G, Fu X, Deng B, Xu Z, Dai S, Huang G. MiR-216a-3p inhibits the proliferation and invasion of fibroblast-like synoviocytes by targeting dual-specificity phosphatase 5. Int J Rheum Dis 2023; 26:699-709. [PMID: 36843205 DOI: 10.1111/1756-185x.14622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/28/2023]
Abstract
Dual-specificity phosphatase 5 (DUSP5) is a novel anti-inflammatory modulator in many inflammatory diseases. However, the role of DUSP5 in fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA) remains unknown. In this study, we aimed to explore the biological function and regulation of DUSP5 in FLS. We found that lower DUSP5 expression level was detected in collagen-induced arthritis (CIA) and synoviocyte MH7A. Overexpression of DUSP5 markedly decreased the proliferation, migration, and invasion of MH7A, which correlated with suppressing the phosphorylation of extracellular signal-regulated kinase (ERK). Moreover, DUSP5 was identified as a novel target gene of miR-216a-3p, which was upregulated in FLS. Therefore, DUSP5 expression was negatively regulated by miR-216a-3p, and the effect of DUSP5 overexpression on FLS was reversed by miR-216a-3p mimics. Overall, our study demonstrates that DUSP5 is a miR-216a-3p target gene and its anti-inflammatory function in FLS via inactivation of ERK. These results revealed that the miR-216a-3p/DUSP5 pathway may play a crucial role in the malignant behavior of FLS, which may serve as a new target for the treatment of RA.
Collapse
Affiliation(s)
- Rongrong Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Guojing Song
- Urology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaohong Fu
- Office of Academic Research, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bingqian Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Shuangshuang Dai
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Wen J, Ping H, Kong X, Chai W. Developmental dysplasia of the hip: A systematic review of susceptibility genes and epigenetics. Gene 2023; 853:147067. [PMID: 36435507 DOI: 10.1016/j.gene.2022.147067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a complex developmental deformity whose pathogenesis and susceptibility-related genes have yet to be elucidated. This systematic review summarizes the current literature on DDH-related gene mutations, animal model experiments, and epigenetic changes in DDH. METHODS We performed a comprehensive search of relevant documents in the Medline, Scopus, Cochrane, and ScienceDirect databases covering the period from October 1991 to October 2021. We analyzed basic information on the included studies and summarized the DDH-related mutation sites, animal model experiments, and epigenetic changes associated with DDH. RESULTS A total of 63 studies were included in the analysis, of which 54 dealt with the detection of gene mutations, 7 presented details of animal experiments, and 6 were epigenetic studies. No genetic mutations were clearly related to the pathogenesis of DDH, including the most frequently studied genes on chromosomes 1, 17, and 20. Most gene-related studies were performed in Han Chinese or North American populations, and the quality of these studies was medium or low. GDF5 was examined in the greatest number of studies, and mutation sites with odds ratios > 10 were located on chromosomes 3, 9, and 13. Six mutations were found in animal experiments (i.e., CX3CR1, GDF5, PAPPA2, TENM3, UFSP2, and WISP3). Epigenetics research on DDH has focused on GDF5 promoter methylation, three microRNAs (miRNAs), and long noncoding RNAs. In addition, there was also a genetic test for miRNA and mRNA sequencing. CONCLUSIONS DDH is a complex joint deformity with a considerable genetic component whose early diagnosis is significant for preventing disease. At present, no genes clearly involved in the pathogenesis of DDH have been identified. Research on mutations associated with this condition is progressing in the direction of in vivo experiments in animal models to identify DDH susceptibility genes and epigenetics analyses to provide novel insights into its pathogenesis. In the future, genetic profiling may improve matters.
Collapse
Affiliation(s)
- Jiaxin Wen
- School of Medicine, Nankai University, Tianjin, China
| | - Hangyu Ping
- School of Medicine, Nankai University, Tianjin, China
| | | | - Wei Chai
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Yang H, Zhang Y, Du Z, Wu T, Yang C. Hair follicle mesenchymal stem cell exosomal lncRNA H19 inhibited NLRP3 pyroptosis to promote diabetic mouse skin wound healing. Aging (Albany NY) 2023; 15:791-809. [PMID: 36787444 PMCID: PMC9970314 DOI: 10.18632/aging.204513] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Skin wounds caused by diabetes are a major medical problem. Mesenchymal stem cell-derived exosomes hold promise to quicken wound healing due to their ability to transfer certain molecules to target cells, including mRNAs, microRNAs, lncRNAs, and proteins. Nonetheless, the specific mechanisms underlying this impact are not elucidated. Therefore, this research aimed to investigate the effect of MSC-derived exosomes comprising long non-coding RNA (lncRNA) H19 on diabetic skin wound healing. Hair follicle mesenchymal stem cells (HF-MSCs) were effectively isolated and detected, and exosomes (Exo) were also isolated smoothly. Pretreatment with 30 mM glucose for 24 h (HG) could efficiently induce pyroptosis in HaCaT cells. Exosomal H19 enhanced HaCaT proliferation and migration and inhibited pyroptosis by reversing the stimulation of the NLRP3 inflammasome. Injection of exosomes overexpressing lncRNA H19 to diabetic skin wound promoted sustained skin wound healing, whereas sh-H19 exosomes did not have this effect. In conclusion, Exosomes overexpressing H19 promoted HaCaT proliferation, migration and suppressed pyroptosis both in vitro and in vivo. Therefore, HFMSC-derived exosomes that overexpress H19 may be included in strategies for healing diabetic skin wounds.
Collapse
Affiliation(s)
- Hongliang Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Yan Zhang
- School of Public Health, Beihua University, Jilin 132033, China
| | - Zhenwu Du
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Tengfei Wu
- Department of Laboratory Animal Science, China Medical University, Shenyang 110122, China
| | - Chun Yang
- College of Basic Medicine, Beihua University, Jilin 132033, China
| |
Collapse
|
10
|
Wang R, Shiu HT, Lee WYW. Emerging role of lncRNAs in osteoarthritis: An updated review. Front Immunol 2022; 13:982773. [PMID: 36304464 PMCID: PMC9593085 DOI: 10.3389/fimmu.2022.982773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease, which is associated with progressive articular cartilage loss, synovial inflammation, subchondral sclerosis and meniscus injury. The molecular mechanism underlying OA pathogenesis is multifactorial. Long non-coding RNAs (lncRNAs) are non-protein coding RNAs with length more than 200 nucleotides. They have various functions such as modulating transcription and protein activity, as well as forming endogenous small interfering RNAs (siRNAs) and microRNA (miRNA) sponges. Emerging evidence suggests that lncRNAs might be involved in the pathogenesis of OA which opens up a new avenue for the development of new biomarkers and therapeutic strategies. The purpose of this review is to summarize the current clinical and basic experiments related to lncRNAs and OA with a focus on the extensively studied H19, GAS5, MALAT1, XIST and HOTAIR. The potential translational value of these lncRNAs as therapeutic targets for OA is also discussed.
Collapse
Affiliation(s)
- Rongliang Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Ting Shiu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Wayne Yuk Wai Lee,
| |
Collapse
|
11
|
Li S, Si H, Xu J, Liu Y, Shen B. The therapeutic effect and mechanism of melatonin on osteoarthritis: From the perspective of non-coding RNAs. Front Genet 2022; 13:968919. [PMID: 36267400 PMCID: PMC9576930 DOI: 10.3389/fgene.2022.968919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) is a slowly progressing and irreversible joint disease. The existing non-surgical treatment can only delay its progress, making the early treatment of OA a research hotspot in recent years. Melatonin, a neurohormone mainly secreted by the pineal gland, has a variety of regulatory functions in different organs, and numerous studies have confirmed its therapeutic effect on OA. Non-coding RNAs (ncRNAs) constitute the majority of the human transcribed genome. Various ncRNAs show significant differentially expressed between healthy people and OA patients. ncRNAs play diverse roles in many cellular processes and have been implicated in many pathological conditions, especially OA. Interestingly, the latest research found a close interaction between ncRNAs and melatonin in regulating the pathogenesis of OA. This review discusses the current understanding of the melatonin-mediated modulation of ncRNAs in the early stage of OA. We also delineate the potential link between rhythm genes and ncRNAs in chondrocytes. This review will serve as a solid foundation to formulate ideas for future mechanistic studies on the therapeutic potential of melatonin and ncRNAs in OA and better explore the emerging functions of the ncRNAs.
Collapse
|
12
|
Nakamura Y, Saitou M, Komura S, Matsumoto K, Ogawa H, Miyagawa T, Saitou T, Imamura T, Imai Y, Takayanagi H, Akiyama H. Reduced dynamic loads due to hip dislocation induce acetabular cartilage degeneration by IL-6 and MMP3 via the STAT3/periostin/NF-κB axis. Sci Rep 2022; 12:12207. [PMID: 35842459 PMCID: PMC9288549 DOI: 10.1038/s41598-022-16585-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Developmental dysplasia of the hip (DDH) is characterized by anatomical abnormalities of the hip joint, ranging from mild acetabular dysplasia to hip subluxation and eventually dislocation. The mechanism underlying the cartilage degeneration of the hip joints exposed to reduced dynamic loads due to hip dislocation remains unknown. We established a rodent hip dislocation (disarticulation; DA) model of DDH (DA-DDH rats and mice) by swaddling. Expression levels of periostin (Postn) and catabolic factors, such as interleukin-6 (IL-6) and matrix metalloproteinase 3 (Mmp3), increased and those of chondrogenic markers decreased in the acetabular cartilage of the DA-DDH models. Postn induced IL-6 and Mmp3 expression in chondrocytes through integrin αVβ3, focal adhesion kinase, Src, and nuclear factor-κB (NF-κB) signaling. The microgravity environment created by a random positioning machine induced Postn expression in chondrocytes through signal transducer and activator of transcription 3 (STAT3) signaling. IL-6 stimulated Postn expression via STAT3 signaling. Furthermore, cartilage degeneration was suppressed in the acetabulum of Postn−/− DA-DDH mice compared with that in the acetabulum of wild type DA-DDH mice. In summary, reduced dynamic loads due to hip dislocation induced acetabular cartilage degeneration via IL-6 and MMP3 through STAT3/periostin/NF-κB signaling in the rodent DA-DDH models.
Collapse
Affiliation(s)
- Yutaka Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Mitsuru Saitou
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kazu Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyasu Ogawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takaki Miyagawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
13
|
Cai Z, Long T, Zhao Y, Lin R, Wang Y. Epigenetic Regulation in Knee Osteoarthritis. Front Genet 2022; 13:942982. [PMID: 35873487 PMCID: PMC9304589 DOI: 10.3389/fgene.2022.942982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a complicated disease with both hereditary and environmental causes. Despite an increase in reports of possible OA risk loci, it has become clear that genetics is not the sole cause of osteoarthritis. Epigenetics, which can be triggered by environmental influences and result in transcriptional alterations, may have a role in OA pathogenesis. The majority of recent research on the epigenetics of OA has been focused on DNA methylation, histone modification, and non-coding RNAs. However, this study will explore epigenetic regulation in OA at the present stage. How genetics, environmental variables, and epigenetics interact will be researched, shedding light for future studies. Their possible interaction and control processes open up new avenues for the development of innovative osteoarthritis treatment and diagnostic techniques.
Collapse
Affiliation(s)
| | - Teng Long
- *Correspondence: Teng Long, ; You Wang,
| | | | | | - You Wang
- *Correspondence: Teng Long, ; You Wang,
| |
Collapse
|
14
|
Zheng T, Huang J, Lai J, Zhou Q, Liu T, Xu Q, Ji G, Ye Y. Long non-coding RNA HOTAIRincreased mechanical stimulation-induced apoptosis by regulating microRNA-221/BBC3 axis in C28/I2 cells. Bioengineered 2021; 12:10734-10744. [PMID: 34874225 PMCID: PMC8810135 DOI: 10.1080/21655979.2021.2003129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abnormal mechanical stimulation contributes to articular cartilage degeneration and osteoarthritis (OA) development. Many long noncoding RNAs (lncRNAs) are involved in mechanical force-induced cartilage degeneration. LncRNA HOTAIR (HOTAIR) has been demonstrated to increase osteoarthritis progression. However, the roles of HOTAIR in mechanical stimulation-treated chondrocytes are still unclear. In this study, we found that mechanical stimulation significantly induced apoptosis in C28/I2 cells. In addition, the expression of HOTAIR was up regulated and the expression of miR-221 was down regulated. Knockdown of HOTAIR effectively ameliorated cell apoptosis induced by mechanical stimulation. HOTAIR could interact with miR-221, which targeted to degrade BBC3. Overexpression of BBC3 could reverse the decreased apoptotic rates induced by HOTAIR knockdown. Collectively, HOTAIR promoted mechanical stimulation-induced apoptosis by regulating the miR-221/BBC3 axis in C28/I2 cells.
Collapse
Affiliation(s)
- Tiansheng Zheng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yongjun Ye
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
15
|
Zhou X, Cao H, Wang M, Zou J, Wu W. Moderate-intensity treadmill running relieves motion-induced post-traumatic osteoarthritis mice by up-regulating the expression of lncRNA H19. Biomed Eng Online 2021; 20:111. [PMID: 34794451 PMCID: PMC8600697 DOI: 10.1186/s12938-021-00949-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/03/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The purpose of this study was to explore whether moderate-intensity exercise can alleviate motion-induced post-traumatic osteoarthritis (PTOA) and the expression change of lncRNA H19 during this progression. METHODS Twenty-week-old male C57BL/6 mice were randomly divided into five groups: model control group (MC group, n = 6), treadmill model group (M group, n = 6), rehabilitation control group (RC group, n = 6), treadmill model + rehabilitation training group (M + R group, n = 6) and treadmill model + convalescent group (M + C group, n = 6). Paraffin sections were used to observe the pathological changes in the mouse knee joint in each group. A micro-CT was used to scan the knee joint to obtain the morphological indexes of the tibial plateau bone. Real-time PCR was used to detect the mRNA levels of inflammatory factors, synthetic and catabolic factors in cartilage. RESULTS After high-intensity exercise for 4 weeks, the inflammation and catabolism of the mouse knee cartilage were enhanced, and the anabolism was weakened. Further study showed that these results were partially reversed after 4-week moderate-intensity training. The results of hematoxylin-eosin staining confirmed this finding. Meanwhile, high-intensity exercise reduced the expression of lncRNA H19 in cartilage, while the expression of lncRNA H19 increased after 4 weeks of moderate-intensity exercise. CONCLUSION High-intensity treadmill running can cause injury to the knee cartilage in C57BL/6 mice which leads to PTOA and a decrease of lncRNA H19 expression in cartilage. Moderate-intensity exercise can relieve PTOA and partially reverse lncRNA H19 expression.
Collapse
Affiliation(s)
- Xuchang Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Miao Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Wei Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
16
|
Zheng T, Zhou Q, Huang J, Lai J, Ji G, Kong D. Xanthohumol Inhibited Mechanical Stimulation-Induced Articular ECM Degradation by Mediating lncRNA GAS5/miR-27a Axis. Front Pharmacol 2021; 12:737552. [PMID: 34616299 PMCID: PMC8489376 DOI: 10.3389/fphar.2021.737552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is histopathologically marked by extracellular matrix (ECM) degradation in joint cartilage. Abnormal mechanical stimulation on joint cartilage may result in ECM degeneration and OA development. Matrix metalloproteinase 13 (MMP-13) is one of the catabolic enzymes contributing to the degradation of ECM, and it has become the potential biomarker for the therapeutic management of OA. Xanthohumol (XH), a naturally occurring prenylflavonoid derived from hops and beer, shows the protective activity against OA development. However, the potential mechanisms still need great effort. In this article, mechanical stimulation could significantly increase the expression of MMP-13 and lncRNA GAS5 (GAS5) and promoting ECM degradation. These could be effectively reversed by XH administration. Suppressed expression GAS5 ameliorated mechanical stimulation-induced MMP-13 expression. MiR-27a was predicted and verified as a target of GAS5, and overexpression of miR-27a down regulated the expression of MMP-13. Collectively, XH exhibited protective effects against mechanical stimulation-induced ECM degradation by mediating the GAS5/miR-27a signaling pathway in OA chondrocytes.
Collapse
Affiliation(s)
- Tiansheng Zheng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dechao Kong
- Department of Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Yan L, Liu G, Wu X. The umbilical cord mesenchymal stem cell-derived exosomal lncRNA H19 improves osteochondral activity through miR-29b-3p/FoxO3 axis. Clin Transl Med 2021; 11:e255. [PMID: 33463060 PMCID: PMC7805401 DOI: 10.1002/ctm2.255] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/07/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Our previous study revealed that the exosomal lncRNA H19 derived from umbilical cord mesenchymal stem cells (UMSCs) plays a pivotal role in osteochondral regeneration. In this study, we investigated whether the exosomal lncRNA H19 could act as a competing endogenous RNA (ceRNA) to potentiate osteochondral activity in chondrocytes. METHODS Dual-luciferase reporter assay, RNA pull-down, RNA immunoprecipitation (RIP), and fluorescence in situ hybridization (FISH) were carried to verify the interaction between miR-29b-3p and both lncRNA H19 and the target mRNA FoxO3. Chondrocytes were treated with UMSC-derived exosomes, which highly expressing lncRNA H19 expression, followed by apoptosis, migration, senescence, and matrix secretion assessments. An in vivo SD rat cartilage defect model was carried out to explore the role and mechanism of lncRNA H19/miR-29b-3p. RESULTS UMSCs were successfully identified, and exosomes were successfully extracted. Exosomes exhibited the ability to transfer lncRNA H19 to chondrocytes. Mechanistically, exosomal lncRNA H19 potentiated osteochondral activity by acting as a competing endogenous sponge of miR-29b-3p, and miR-29b-3p directly targeted FoxO3. Intra-articular injection of exosomes overexpressing lncRNA H19 could promote sustained cartilage repair; however, this effect could be undermined by miR-29b-3p agomir. CONCLUSIONS Our study revealed a significant role in the development of strategies against cartilage defects for UMSC-derived exosomes that overexpress lncRNA H19. Exosomal H19 was found to promote chondrocyte migration, matrix secretion, apoptosis suppression, as well as senescence suppression, both in vitro and in vivo. The specific mechanism lies in the fact that exosomal H19 acts as a ceRNA against miR-29b-3p to upregulate FoxO3 in chondrocytes.
Collapse
Affiliation(s)
- Litao Yan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiPR China
| | - Gejun Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiPR China
| | - Xing Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiPR China
| |
Collapse
|