1
|
Bai R, Yang B, Peng K, Xiang A, Wan Z, Li M, Zheng X, Zhao J, zhao Y, Zheng J, Guan P. Identification of a novel dwarfing gene, Rht_m097, on chromosome 4BS in common wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:38. [PMID: 40191669 PMCID: PMC11968616 DOI: 10.1007/s11032-025-01558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Plant height is a crucial agronomic trait in wheat, regulated by multiple genes, and significantly influences plant architecture and wheat yield. In this study, a novel dwarf mutant, designated as m097, was developed and characterized through the treatment of seeds from the common wheat cultivar Jinmai47 with ethyl methanesulfonate (EMS). Microscopic analysis revealed that the dwarf phenotype was attributed to a reduction in the longitudinal cell size of the stem. Similar to the wild type, m097 exhibited sensitivity to exogenous gibberellic acid (GA). Genetic analysis indicated that the reduced plant height in m097 was regulated by a semi-dominant dwarfing gene, Rht_m097. Through bulk segregant analysis (BSA) utilizing the wheat 660K SNP array, Rht_m097 was mapped and confined to a region of approximately 2.58 Mb on chromosome arm 4BS, encompassing 16 high-confidence annotated genes. In addition, transcriptome sequencing (RNA-seq) was conducted on the first internode below the panicle of JM47 and m097 at the jointing stage, leading to the identification of two potential candidate genes exhibiting differential expression. Furthermore, the analysis of gene ontology and metabolic pathways from RNA-seq data indicated that the down-regulated differentially expressed genes (DEGs) in m097 were biologically classified as regulating actin cortical patch organization and assembly. Concurrently, it was observed that the up-regulated DEGs were significantly enriched in various phytohormone metabolic pathways, including those involved in indole-3-acetic acid (IAA) biosynthesis, jasmonic acid biosynthesis, and gibberellin signaling. Overall, this study provides a novel genetic resource for the breeding of dwarf wheat and establishes a foundation for subsequent gene cloning. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01558-0.
Collapse
Affiliation(s)
- Rongji Bai
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000 China
| | - Bin Yang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000 China
| | - Kai Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Aihui Xiang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000 China
| | - Zidong Wan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Mengxin Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Xingwei Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000 China
| | - Jiajia Zhao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000 China
| | - Yue zhao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Jun Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000 China
| | - Panfeng Guan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
2
|
Shirke HA, Darshetkar AM, Naikawadi VB, Kavi Kishor PB, Nikam TD, Barvkar VT. Genomics of sterols biosynthesis in plants: Current status and future prospects. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112426. [PMID: 39956365 DOI: 10.1016/j.plantsci.2025.112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Sterols produced by bacteria and all eukaryotic organisms are essential for membrane functionality and stability. They play a vital role in growth, development and in abiotic stress tolerance. They are involved in diverse responses to biotic and abiotic stresses that lead to providing resistance against multiple diseases. Additionally, sterols serve as defensive compounds against herbivorous insects and animals. Phytosterols derived from plants, improve human nutrition and health and cure different ailments. The biosynthetic pathways for sterols and triterpenes exhibit similarities until the synthesis of 2,3-oxidosqualene. The complexity of sterol pathways increases during the advanced stages of polycyclic structure synthesis, and remain poorly comprehended in plants. This review explores the various omics techniques used to unveil the functions of genes associated with the phytosterol pathways. The study investigates the biosynthetic gene clusters to clarify the structural arrangements of genes linked to metabolic pathways. Both the upstream and downstream genes associated with these pathways, as well as their evolutionary connections and interrelations within the pathways were brought to the forefront. Moreover, developing strategies to unravel the biosynthesis completely and their multi-layered regulation are crucial to comprehend the global roles that sterols play in plant growth, development, stress tolerance and in imparting defence against pathogens.
Collapse
Affiliation(s)
- Harshad A Shirke
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| | | | - Vikas B Naikawadi
- Department of Botany, Chandmal Tarachand Bora College, Shirur, Pune 412210, India.
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| | - Tukaram D Nikam
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
3
|
Guo A, Nie H, Li H, Li B, Cheng C, Jiang K, Zhu S, Zhao N, Hua J. The miR3367-lncRNA67-GhCYP724B module regulates male sterility by modulating brassinosteroid biosynthesis and interacting with Aorf27 in Gossypium hirsutum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:169-190. [PMID: 39526576 PMCID: PMC11734110 DOI: 10.1111/jipb.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Cytoplasmic male sterile (CMS) lines play a crucial role in utilization of heterosis in crop plants. However, the mechanism underlying the manipulation of male sterility in cotton by long non-coding RNA (lncRNA) and brassinosteroids (BRs) remains elusive. Here, using an integrative approach combining lncRNA transcriptomic profiles with virus-induced gene silencing experiments, we identify a flower bud-specific lncRNA in the maintainer line 2074B, lncRNA67, negatively modulating with male sterility in upland cotton (Gossypium hirsutum). lncRNA67 positively regulates cytochrome P274B (GhCYP724B), which acted as an eTM (endogenous target mimic) for miR3367. The suppression of GhCYP724B induced symptoms of BR deficiency and male semi-sterility in upland cotton as well as in tobacco, which resulted from a reduction in the endogenous BR contents. GhCYP724B regulates BRs synthesis by interacting with GhDIM and GhCYP90B, two BRs biosynthesis proteins. Additionally, GhCYP724B suppressed a unique chimeric open reading frame (Aorf27) in 2074A mitochondrial genome. Ectopic expression of Aorf27 in yeast inhibited cellular growth, and over expression of Aorf27 in tobacco showed male sterility. Overall, the results proved that the miR3367-lncRNA67-GhCYP724B module positively regulates male sterility by modulating BRs biosynthesis. The findings uncovered the function of lncRNA67-GhCYP724B in male sterility, providing a new mechanism for understanding male sterility in upland cotton.
Collapse
Affiliation(s)
- Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Cheng Cheng
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Kaiyun Jiang
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Shengwei Zhu
- Key Laboratory of Plant Molecular Physiology, Institute of BotanyChinese Academy of SciencesBeijing100093China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
4
|
Zebosi B, Vollbrecht E, Best NB. Brassinosteroid biosynthesis and signaling: Conserved and diversified functions of core genes across multiple plant species. PLANT COMMUNICATIONS 2024; 5:100982. [PMID: 38816993 DOI: 10.1016/j.xplc.2024.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Brassinosteroids (BRs) are important regulators that control myriad aspects of plant growth and development, including biotic and abiotic stress responses, such that modulating BR homeostasis and signaling presents abundant opportunities for plant breeding and crop improvement. Enzymes and other proteins involved in the biosynthesis and signaling of BRs are well understood from molecular genetics and phenotypic analysis in Arabidopsis thaliana; however, knowledge of the molecular functions of these genes in other plant species, especially cereal crop plants, is minimal. In this manuscript, we comprehensively review functional studies of BR genes in Arabidopsis, maize, rice, Setaria, Brachypodium, and soybean to identify conserved and diversified functions across plant species and to highlight cases for which additional research is in order. We performed phylogenetic analysis of gene families involved in the biosynthesis and signaling of BRs and re-analyzed publicly available transcriptomic data. Gene trees coupled with expression data provide a valuable guide to supplement future research on BRs in these important crop species, enabling researchers to identify gene-editing targets for BR-related functional studies.
Collapse
Affiliation(s)
- Brian Zebosi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA.
| | - Norman B Best
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65201, USA.
| |
Collapse
|
5
|
Je S, Choi BY, Kim E, Kim K, Lee Y, Yamaoka Y. Sterol Biosynthesis Contributes to Brefeldin-A-Induced Endoplasmic Reticulum Stress Resistance in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2024; 65:916-927. [PMID: 37864404 DOI: 10.1093/pcp/pcad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
The endoplasmic reticulum (ER) stress response is an evolutionarily conserved mechanism in most eukaryotes. In this response, sterols in the phospholipid bilayer play a crucial role in controlling membrane fluidity and homeostasis. Despite the significance of both the ER stress response and sterols in maintaining ER homeostasis, their relationship remains poorly explored. Our investigation focused on Chlamydomonas strain CC-4533 and revealed that free sterol biosynthesis increased in response to ER stress, except in mutants of the ER stress sensor Inositol-requiring enzyme 1 (IRE1). Transcript analysis of Chlamydomonas experiencing ER stress unveiled the regulatory role of the IRE1/basic leucine zipper 1 pathway in inducing the expression of ERG5, which encodes C-22 sterol desaturase. Through the isolation of three erg5 mutant alleles, we observed a defect in the synthesis of Chlamydomonas' sterol end products, ergosterol and 7-dehydroporiferasterol. Furthermore, these erg5 mutants also exhibited increased sensitivity to ER stress induced by brefeldin A (BFA, an inhibitor of ER-Golgi trafficking), whereas tunicamycin (an inhibitor of N-glycosylation) and dithiothreitol (an inhibitor of disulfide-bond formation) had no such effect. Intriguingly, the sterol biosynthesis inhibitors fenpropimorph and fenhexamid, which impede steps upstream of the ERG5 enzyme in sterol biosynthesis, rescued BFA hypersensitivity in CC-4533 cells. Collectively, our findings support the conclusion that the accumulation of intermediates in the sterol biosynthetic pathway influences ER stress in a complex manner. This study highlights the significance and complexity of regulating sterol biosynthesis during the ER stress response in microalgae.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Bae Young Choi
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Eunbi Kim
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyungyoon Kim
- Research Institute of Basic Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
6
|
Xu M, Ni Y, Tu Y, Wang Y, Zhang Z, Jiao Y, Zhang X. A SCYL2 gene from Oryza sativa is involved in phytosterol accumulation and regulates plant growth and salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112062. [PMID: 38461862 DOI: 10.1016/j.plantsci.2024.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Rice is a crucial food for humans due to its high nutritional value. Phytosterols, essential components of the plant membrane lipid bilayer, play a vital role in plant growth and contribute significantly to lipid-lowering, antitumor, and immunomodulation processes. In this study, SCY1-like protein kinases 2 (SCYL2) was found to be closely related to the accumulation of phytosterols. The levels of campesterol, stigmasterol, and β-sitosterol significantly increased in transgenic rice seeds, husks, and leaves, whereas there was a considerable reduction in scyl2 plants. Subsequent investigations revealed the crucial role of SCYL2 in plant development. Mutations in this gene led to stunted plant growth while overexpressing OsSCYL2 in Arabidopsis and rice resulted in larger leaves, taller plants, and accelerated development. When subjected to salt stress, Arabidopsis plants overexpressed OsSCYL2 showed significantly higher germination rates than wild-type plants. Similarly, transgenic rice seedlings displayed better growth than both ZH11 and mutant plants, exhibiting lower malondialdehyde (MDA) content and higher peroxidase (POD), and catalase (CAT) activities. Conversely, scyl2 plants exhibited more yellow leaves or even death. These findings suggested that OsSCYL2 proteins might be involved in phytosterols synthesis and play an important role during plant growth and development. This study provides a theoretical basis for developing functional rice.
Collapse
Affiliation(s)
- Minyan Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ying Ni
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yaling Tu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yanping Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuhuan Jiao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xin Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Lu J, Yan S, Xue Z. Biosynthesis and functions of triterpenoids in cereals. J Adv Res 2024:S2090-1232(24)00211-X. [PMID: 38788922 DOI: 10.1016/j.jare.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Triterpenoids are versatile secondary metabolites with a diverse array of physiological activities, possessing valuable pharmacological effects and influencing the growth and development of plants. As more triterpenoids in cereals are unearthed and characterized, their biological roles in plant growth and development are gaining recognition. AIM OF THE REVIEW This review provides an overview of the structures, biosynthetic pathways, and diverse biological functions of triterpenoids identified in cereals. Our goal is to establish a basis for further exploration of triterpenoids with novel structures and functional activities in cereals, and to facilitate the potential application of triterpenoids in grain breeding, thus accelerating the development of superior grain varieties. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This review consolidates information on various triterpenoid skeletons and derivatives found in cereals, and summarizes the pivotal enzyme genes involved, including oxidosqualene cyclase (OSC) and other triterpenoid modifying enzymes like cytochrome P450, glycosyltransferase, and acyltransferase. Triterpenoid-modifying enzymes exhibit specificity towards catalytic sites within triterpenoid skeletons, generating a diverse array of functional triterpenoid derivatives. Furthermore, triterpenoids have been shown to significantly impact the nutritional value, yield, disease resistance, and stress response of cereals.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Shan Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China; State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
8
|
The Transcription Factor CsAtf1 Negatively Regulates the Cytochrome P450 Gene CsCyp51G1 to Increase Fludioxonil Sensitivity in Colletotrichum siamense. J Fungi (Basel) 2022; 8:jof8101032. [PMID: 36294597 PMCID: PMC9605597 DOI: 10.3390/jof8101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Previous studies have shown that the high-osmolarity glycerol mitogen-activated protein kinase (HOG MAPK) signaling pathway and its downstream transcription factor CsAtf1 are involved in the regulation of fludioxonil sensitivity in C. siamense. However, the downstream target genes of CsAtf1 related to the fludioxonil stress response remain unclear. Here, we performed chromatin immunoprecipitation sequencing (ChIP-Seq) and high-throughput RNA-sequencing (RNA-Seq) to identify genome-wide potential CsAtf1 target genes. A total of 3809 significantly differentially expressed genes were predicted to be directly regulated by CsAtf1, including 24 cytochrome oxidase-related genes. Among them, a cytochrome P450-encoding gene, designated CsCyp51G1, was confirmed to be a target gene, and its transcriptional expression was negatively regulated by CsAtf1, as determined using an electrophoretic mobility shift assay (EMSA), a yeast one-hybrid (Y1H) assay, and quantitative real-time PCR (qRT-PCR). Moreover, the overexpression mutant CsCYP51G1 of C. siamense exhibited increased fludioxonil tolerance, and the CsCYP51G1 deletion mutant exhibited decreased fludioxonil resistance, which revealed that CsCyp51G1 is involved in fludioxonil sensitivity regulation in C. siamense. However, the cellular ergosterol content of the mutants was not consistent with the phenotype of fludioxonil sensitivity, which indicated that CsCyp51G1 regulates fludioxonil sensitivity by affecting factors other than the ergosterol level in C. siamense. In conclusion, our data indicate that the transcription factor CsAtf1 negatively regulates the cytochrome P450 gene CsCyp51G1 to increase fludioxonil sensitivity in C. siamense.
Collapse
|
9
|
Jiao Z, Yin L, Zhang Q, Xu W, Jia Y, Xia K, Zhang M. The putative obtusifoliol 14α-demethylase OsCYP51H3 affects multiple aspects of rice growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13764. [PMID: 35975452 DOI: 10.1111/ppl.13764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Some members of the CYP51G subfamily has been shown to be obtusifoliol 14α-demethylase, key enzyme of the sterol and brassinosteroid (BR) biosynthesis, which mediate plant development and response to stresses. However, little is known about the functions of CYP51H subfamily in rice. Here, OsCYP51H3, an ortholog of rice OsCYP51G1 was identified. Compared with wild type, the mutants oscyp51H3 and OsCYP51H3-RNAi showed dwarf phenotype, late flowering, erected leaves, lower seed-setting rate, and smaller and shorter seeds. In contrast, the phenotypic changes of OsCYP51H3-OE plants are not obvious. Metabolomic analysis of oscyp51H3 mutant indicated that OsCYP51H3 may also encode an obtusifoliol 14α-demethylase involved in phytosterol and BR biosynthesis, but possibly not that of triterpenes. The RNA-seq results showed that OsCYP51H3 may affect the expression of a lot of genes related to rice development. These findings showed that OsCYP51H3 codes for a putative obtusifoliol 14α-demethylase involved in phytosterol and BR biosynthesis, and mediates rice development.
Collapse
Affiliation(s)
- Zhengli Jiao
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Lijuan Yin
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiming Zhang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weijuan Xu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kuaifei Xia
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Mingyong Zhang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Du Y, Fu X, Chu Y, Wu P, Liu Y, Ma L, Tian H, Zhu B. Biosynthesis and the Roles of Plant Sterols in Development and Stress Responses. Int J Mol Sci 2022; 23:ijms23042332. [PMID: 35216448 PMCID: PMC8875669 DOI: 10.3390/ijms23042332] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/01/2023] Open
Abstract
Plant sterols are important components of the cell membrane and lipid rafts, which play a crucial role in various physiological and biochemical processes during development and stress resistance in plants. In recent years, many studies in higher plants have been reported in the biosynthesis pathway of plant sterols, whereas the knowledge about the regulation and accumulation of sterols is not well understood. In this review, we summarize and discuss the recent findings in the field of plant sterols, including their biosynthesis, regulation, functions, as well as the mechanism involved in abiotic stress responses. These studies provide better knowledge on the synthesis and regulation of sterols, and the review also aimed to provide new insights for the global role of sterols, which is liable to benefit future research on the development and abiotic stress tolerance in plant.
Collapse
Affiliation(s)
- Yinglin Du
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Xizhe Fu
- The College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310012, China;
| | - Yiyang Chu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Peiwen Wu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Ye Liu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Lili Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Huiqin Tian
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
- Correspondence:
| |
Collapse
|