1
|
Ali DE, Sweilam SH, Atwa AM, Elgindy AM, Mustafa AM, Esmail MM, Alkabbani MA, Senna MM, El-Shiekh RA. HPLC-HRMS/MS and anti-inflammatory effects of bunya pine resin through multifaceted pathway modulation: NUMB/NOTCH1/HES1/mTOR/ PI3K/HMGB1 signaling cascades. Inflammopharmacology 2025:10.1007/s10787-025-01660-x. [PMID: 40163273 DOI: 10.1007/s10787-025-01660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/12/2025] [Indexed: 04/02/2025]
Abstract
The oleoresins of the Araucaria bidwillii Hook. (A.B.) are commonly used for the treatment of several conditions. However, the full phytochemical profile of its active compounds and its mechanism of action to protect the liver from toxicity remain unclear. The purpose of this research was to investigate the complete set of data relating to the A.B. active metabolites and explore the hepatoprotective properties of AB ethanolic extract on MTX-induced liver injury mainly due to its anti-inflammatory role. Hepatic markers, oxidative stress, inflammatory mediators, the NOTCH/NICD signaling cascade, HES1 expression, HMGB1/TLR4, and the PI3K/mTOR axis were assessed. HPLC-HRMS/MS analysis of A.B. led to the annotation of fifteen compounds from different classes, where diterpenes are the dominant class. Additionally, A.B. (100 and 200 mg/kg) significantly decreased hepatic markers, oxidative stress, and inflammatory mediators. Moreover, the extract significantly increased NOTCH pathway stimulation and HES1 expression, accompanied by a significant decline in the NUMB and HMGB1/TLR4 axes. In addition, it significantly inhibited the PI3K/mTOR pathway, with a prominent effect at the higher dose. This study presents A.B. as a promising hepatoprotective agent through stimulation of the NOTCH pathway and inhibition of the HMGB1/TLR4 pathway, as well as the PI3K/mTOR/NF-κB axis, besides its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Dalia E Ali
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq
| | - Ali M Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Manar M Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
He XYX, Zhao WL, Yao LP, Sun P, Cheng G, Liu YL, Yu Y, Liu Y, Wang TJ, Zhang QY, Qin LP, Zhang QL. Orcinol glucoside targeted p38 as an agonist to promote osteogenesis and protect glucocorticoid-induced osteoporosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154953. [PMID: 37573809 DOI: 10.1016/j.phymed.2023.154953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Glucocorticoids (GC)-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis, which leads to an increased risk of fracture in patients. The inhibition of the osteoblast effect is one of the main pathological characteristics of GIOP, but without effective drugs on treatment. PURPOSE The aim of this study was to investigate the potential effects of orcinol glucoside (OG) on osteoblast cells and GIOP mice, as well as the mechanism of the underlying molecular target protein of OG both in vitro osteoblast cell and in vivo GIOP mice model. METHODS GIOP mice were used to determine the effect of OG on bone density and bone formation. Then, a cellular thermal shift assay coupled with mass spectrometry (CETSA-MS) method was used to identify the target of OG. Surface plasmon resonance (SPR), enzyme activity assay, molecular docking, and molecular dynamics were used to detect the affinity, activity, and binding site between OG and its target, respectively. Finally, the anti-osteoporosis effect of OG through the target signal pathway was investigated in vitro osteoblast cell and in vivo GIOP mice model. RESULTS OG treatment increased bone mineral density (BMD) in GIOP mice and effectively promoted osteoblast proliferation, osteogenic differentiation, and mineralization in vitro. The CETSA-MS result showed that the target of OG acting on the osteoblast is the p38 protein. SPR, molecular docking assay and enzyme activity assay showed that OG could direct bind to the p38 protein and is a p38 agonist. The cellular study found that OG could promote p38 phosphorylation and upregulate the proteins expression of its downstream osteogenic (Runx2, Osx, Collagen Ⅰ, Dlx5). Meanwhile, it could also inhibit the nuclear transport of GR by increasing the phosphorylation site at GR226 in osteoblast cell. In vivo GIOP mice experiment further confirmed that OG could prevent bone loss in the GIOP mice model through promoting p38 activity as well as its downstream proteins expression and activity. CONCLUSIONS This study has established that OG could promote osteoblast activity and revise the bone loss in GIOP mice by direct binding to the p38 protein and is a p38 agonist to improve its downstream signaling, which has great potential in GIOP treatment for targeting p38. This is the first report to identify OG anti-osteoporosis targets using a label-free strategy (CETSA-MS).
Collapse
Affiliation(s)
- Xin-Yun-Xi He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Wan-Lu Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Li-Ping Yao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Peng Sun
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yu-Ling Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yang Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yan Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Teng-Jian Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Qiao-Yan Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Lu-Ping Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Quan-Long Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
3
|
Kohara Y, Kitazawa R, Haraguchi R, Imai Y, Kitazawa S. Macrophages are requisite for angiogenesis of type H vessels during bone regeneration in mice. Bone 2022; 154:116200. [PMID: 34534711 DOI: 10.1016/j.bone.2021.116200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 11/02/2022]
Abstract
Macrophages are progenitors of osteoclasts as well as regulators of bone metabolism. Macrophages mediate not only bone formation by osteoblasts under physiological conditions, but also bone regeneration after fracture. The mechanisms of macrophages regulation of bone formation and regeneration remain unclear, however. Here, we demonstrate that the liposome-encapsulated Clodronate (Clod-lip) injected mouse model with cortical bone defect induced by drill-hole injury and targeted depletion of phagocytic macrophages exhibits impaired angiogenesis of type H vessels that couple angiogenesis and osteogenesis. Moreover, we identify Tgfbi (encoding TGFBI), Plau (encoding uPA) and Tgfb1 (encoding TGF-β1), through RNA-seq analysis, as genes of macrophage-secreted factors mediating angiogenesis and wound healing. The relevant mRNA was highly expressed in bone marrow-derived macrophages among bone cells, as determined through qRT-PCR. Finally, we disclose that treatment with uPA inhibitor or TGF-β receptor I, receptor II inhibitor impairs bone regeneration after injury, confirming the importance of uPA and TGF-β1 during bone regeneration. Our findings reveal a novel mechanism of bone regeneration mediated by macrophages.
Collapse
Affiliation(s)
- Yukihiro Kohara
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan.
| | - Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan; Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon City, Ehime 791-0295, Japan
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan; Division of Analytical Bio-Medicine, Advanced Research Support Center, Ehime University, Toon City, Ehime 791-0295, Japan; Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon City, Ehime 791-0295, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan
| |
Collapse
|
4
|
Shu Y, Xu Q, Xu Y, Tao Q, Shao M, Cao X, Chen Y, Wu Z, Chen M, Zhou Y, Zhou P, Shi Y, Bu H. Loss of Numb promotes hepatic progenitor expansion and intrahepatic cholangiocarcinoma by enhancing Notch signaling. Cell Death Dis 2021; 12:966. [PMID: 34667161 PMCID: PMC8526591 DOI: 10.1038/s41419-021-04263-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/26/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023]
Abstract
Numb, a stem cell fate determinant, acts as a tumor suppressor and is closely related to a wide variety of malignancies. Intrahepatic cholangiocarcinoma (iCCA) originates from hepatic progenitors (HPCs); however, the role of Numb in HPC malignant transformation and iCCA development is still unclear. A retrospective cohort study indicated that Numb was frequently decreased in tumor tissues and suggests poor prognosis in iCCA patients. Consistently, in a chemically induced iCCA mouse model, Numb was downregulated in tumor cells compared to normal cholangiocytes. In diet-induced chronic liver injury mouse models, Numb ablation significantly promoted histological impairment, HPC expansion, and tumorigenesis. Similarly, Numb silencing in cultured iCCA cells enhanced cell spheroid growth, invasion, metastasis, and the expression of stem cell markers. Mechanistically, Numb was found to bind to the Notch intracellular domain (NICD), and Numb ablation promoted Notch signaling; this effect was reversed when Notch signaling was blocked by γ-secretase inhibitor treatment. Our results suggested that loss of Numb plays an important role in promoting HPC expansion, HPC malignant transformation, and, ultimately, iCCA development in chronically injured livers. Therapies targeting suppressed Numb are promising for the treatment of iCCA.
Collapse
Affiliation(s)
- Yuke Shu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Xu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yahong Xu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Tao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingyang Shao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyue Cao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuwei Chen
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenru Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Menglin Chen
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjie Zhou
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Transplantation, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Zhou
- Department of Pathology, Sichuan Tumor Hospital, Chengdu, 610041, China
| | - Yujun Shi
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Transplantation, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hong Bu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|