1
|
Dilger OB, Carstens MF, Bothun CE, Payne AN, Berry DJ, Sanchez-Sotelo J, Morrey ME, Thaler R, Dudakovic A, Abdel MP. Induction of cellular autophagy impairs TGF-β1-mediated extracellular matrix deposition in primary human knee fibroblasts. Bone Joint Res 2025; 14:328-337. [PMID: 40192622 PMCID: PMC11975063 DOI: 10.1302/2046-3758.144.bjr-2024-0312.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Aims To evaluate the role of autophagy in primary knee fibroblasts undergoing myofibroblast differentiation as an in vitro model of arthrofibrosis, a complication after total knee arthroplasty characterized by aberrant intra-articular scar tissue formation and limited range of motion. Methods We conducted a therapeutic screen of autophagic-modulating therapies in primary human knee fibroblasts undergoing transforming growth factor-beta 1 (TGF-β1)-mediated myofibroblast differentiation. Autophagy was induced pharmacologically with rapamycin or by amino acid deprivation. Picrosirius red staining was performed to quantify collagen deposition. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were conducted to evaluate fibrotic gene expression levels. Results Rapamycin, an mTOR complex 1 (mTORC1) inhibitor and autophagy inducer, reduced TGF-β1-mediated collagen deposition. Interestingly, we simultaneously report that myofibrogenic genes, including ACTA2, were highly upregulated following rapamycin-TGF-β1 treatment. When autophagy was induced through amino acid deprivation, we demonstrated suppressed extracellular matrix levels, fibrotic gene expression (e.g. ACTA2), and SMAD2 phosphorylation levels in TGF-β1-stimulated fibroblasts. Conclusion Our findings demonstrate that the induction of cellular autophagy suppresses TGF-β1-induced collagen deposition in primary human knee fibroblasts. Taken together, these data suggest that cellular autophagy may be prophylactic against the pathogenesis of arthrofibrosis.
Collapse
Affiliation(s)
- Oliver B. Dilger
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mason F. Carstens
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Cole E. Bothun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Ashley N. Payne
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Li Z, Jiang J, Cai K, Qiao Y, Zhang X, Wang L, Kang Y, Wu X, Zhao B, Wang X, Zhang T, Lin Z, Wu J, Lu S, Gao H, Jin H, Xu C, Huangfu X, James Z, Chen Q, Zheng X, Liu NN, Zhao J. CCN2 mediates fibroblast-macrophage interaction in knee arthrofibrosis based on single-cell RNA-seq analysis. Bone Res 2025; 13:26. [PMID: 39994205 PMCID: PMC11850813 DOI: 10.1038/s41413-025-00400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 02/26/2025] Open
Abstract
Knee arthrofibrosis, characterized by excessive matrix protein production and deposition, substantially impairs basic daily functions, causing considerable distress and financial burden. However, the underlying pathomechanisms remain unclear. Here, we characterized the heterogeneous cell populations and cellular pathways by combination of flow cytometry and single-cell RNA-seq analysis of synovial tissues from six patients with or without knee arthrofibrosis. Increased macrophages and fibroblasts were observed with decreased numbers of fibroblast-like synoviocytes, endothelial cells, vascular smooth muscle cells, and T cells in the arthrofibrosis group compared with negative controls. Notably, fibroblasts were discovered to interact with macrophages, and lead to fibrosis through TGF-β pathway induced CCN2 expression in fibroblasts. CCN2 was demonstrated to be required for fibroblast pro-fibrotic functions (activation, proliferation, and migration) through TGFBR/SMAD pathway. The expression of CCN2 was positively correlated with the collagen volume and TGF-β expression and negatively associated with patient-reported outcome measures in another cohort of patients with knee arthrofibrosis. Our study reveals the role of CCN2 in the fibroblast-macrophage interaction through TGF-β pathway which might help to shed light on CCN2 as a potential biomarker.
Collapse
Affiliation(s)
- Ziyun Li
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jia Jiang
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kangwen Cai
- Shanghai Normal University, Shanghai, 200233, China
| | - Yi Qiao
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuancheng Zhang
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liren Wang
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiulin Wu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Benpeng Zhao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiuli Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianyi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiqi Lin
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinlong Wu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Simin Lu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haihan Gao
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haocheng Jin
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Caiqi Xu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaoqiao Huangfu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhengzhi James
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qiuhua Chen
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaoqi Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinzhong Zhao
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
3
|
Mao J, Zhang JN, Zhang QB, Zhu DT, Li XM, Xiao H, Kan XL, Zhang R, Zhou Y. Extracorporeal Shock Wave and Melatonin Alleviate Joint Capsule Fibrosis after Knee Trauma in Rats by Regulating Autophagy. Curr Mol Med 2025; 25:222-236. [PMID: 39279114 DOI: 10.2174/0115665240339436240909100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Joint contracture is a common clinical problem affecting joint function. Capsule fibrosis plays a pivotal role in the progression of joint contracture. Previous studies have reported that autophagy plays a regulatory role in visceral fibrosis. OBJECTIVE This study aimed to investigate whether extracorporeal shock wave therapy (ESWT) and melatonin alleviate joint capsule fibrosis in rats with extended knee joint contracture by regulating autophagy. METHODS A rat traumatic knee joint extension contracture model was made. Then, the rats were treated with ESWT, melatonin, ESWT + melatonin, or ESWT + melatonin + mTOR agonist for 4 weeks. The range of motion (ROM) of the knee joints was measured. Joint capsules were collected and observed for pathological changes by H&E and Masson staining. LC3B protein expression was evaluated by immunofluorescence staining. TGF-β1, MMP-1, Col-Ⅰ, Col-Ⅲ, LC3, ATG7, Beclin1, p-AMPK, p-mTOR and p-ULK1 protein expressions were measured by Western blot assay. RESULTS The intervention groups had significantly improved ROM of knee joint (P < 0.05), significantly improved pathological changes on HE and Masson staining, significantly decreased protein expressions of TGF-β1, MMP-1, Col-Ⅰ, Col-Ⅲ and pmTOR (P < 0.05), and significantly increased protein expressions of LC3B, LC3II/LC3I ratio, ATG7, Beclin1, p-AMPK, and p-ULK1 (P < 0.05). Among these groups, the effects demonstrated by the ESWT + melatonin group were the best. With the mTOR agonist supplement, the therapeutic effects of extracorporeal shock waves and melatonin were significantly reduced. CONCLUSION ESWT plus melatonin alleviated knee joint capsule fibrosis in rats by regulating autophagy.
Collapse
Affiliation(s)
- Jing Mao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jin-Niu Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quan-Bing Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De-Ting Zhu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue-Ming Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Han Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiu-Li Kan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Run Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Ramos MS, Pasqualini I, Surace PA, Molloy RM, Deren ME, Piuzzi NS. Arthrofibrosis After Total Knee Arthroplasty: A Critical Analysis Review. JBJS Rev 2023; 11:01874474-202312000-00001. [PMID: 38079496 DOI: 10.2106/jbjs.rvw.23.00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
» Arthrofibrosis after total knee arthroplasty (TKA) is the new formation of excessive scar tissue that results in limited ROM, pain, and functional deficits.» The diagnosis of arthrofibrosis is based on the patient's history, clinical examination, absence of alternative diagnoses from diagnostic testing, and operative findings. Imaging is helpful in ruling out specific causes of stiffness after TKA. A biopsy is not indicated, and no biomarkers of arthrofibrosis exist.» Arthrofibrosis pathophysiology is multifactorial and related to aberrant activation and proliferation of myofibroblasts that primarily deposit type I collagen in response to a proinflammatory environment. Transforming growth factor-beta signaling is the best established pathway involved in arthrofibrosis after TKA.» Management includes both nonoperative and operative modalities. Physical therapy is most used while revision arthroplasty is typically reserved as a last resort. Additional investigation into specific pathophysiologic mechanisms can better inform targeted therapeutics.
Collapse
Affiliation(s)
- Michael S Ramos
- Department of Orthopaedic Surgery, Orthopaedic and Rheumatologic Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | | | | | | | | |
Collapse
|
5
|
IFN- α-2b Reduces Postoperative Arthrofibrosis in Rats by Inhibiting Fibroblast Proliferation and Migration through STAT1/p21 Signaling Pathway. Mediators Inflamm 2023; 2023:1699946. [PMID: 36915717 PMCID: PMC10008118 DOI: 10.1155/2023/1699946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/02/2022] [Accepted: 01/25/2023] [Indexed: 03/07/2023] Open
Abstract
Objective To investigate the effect of IFN-α-2b in preventing postoperative arthrofibrosis in rats, its antiproliferation effect on fibroblasts in vitro, and its molecular mechanism. Methods The rat model of arthrofibrosis was established and treated with different concentrations of drugs. Knee specimens were collected for histological and immunohistochemical staining to observe the effect of IFN-α-2b on arthrofibrosis in rats. The biological information was further mined according to the database data, and the possible regulatory mechanism of IFN-α-2b on fibroblasts was analyzed. The inhibitory effect of IFN-α-2b on fibroblast proliferation and migration in vitro was detected by cell counting kit-8 (CCK-8), immunofluorescence analysis, cell cycle test, EdU assay, wound healing test, and Transwell method, and the analysis results were verified by Western blotting method. Results The test results of rat knee joint specimens showed that IFN-α-2b significantly inhibited the degree of fibrosis after knee joint surgery, the number of fibroblasts in the operation area was less than that of the control group, and the expression of collagen and proliferation-related proteins decreased. In vitro experimental results show that IFN-α-2b can inhibit the proliferation and migration of fibroblasts. According to the results of database analysis, it is suggested that the STAT1/P21 pathway may be involved, and it has been verified and confirmed by Western blotting and other related methods. Conclusion IFN-α-2b can reduce surgery-induced arthrofibrosis by inhibiting fibroblast proliferation and migration, which may be related to the regulation of STAT1/p21 signaling pathway.
Collapse
|
6
|
Li Y, Liu T, Wang X, Jia Y, Cui H. Autophagy and Glycometabolic Reprograming in the Malignant Progression of Lung Cancer: A Review. Technol Cancer Res Treat 2023; 22:15330338231190545. [PMID: 37605558 PMCID: PMC10467373 DOI: 10.1177/15330338231190545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide. However, there are currently limited treatment options that are widely available to patients with advanced lung cancer, and further research is required to inhibit or reverse disease progression more effectively. In lung and other solid tumor cancers, autophagy and glycometabolic reprograming are critical regulators of malignant development, including proliferation, drug resistance, invasion, and metastasis. To provide a theoretical basis for therapeutic strategies targeting autophagy and glycometabolic reprograming to prevent lung cancer, we review how autophagy and glycometabolism are regulated in the malignant development of lung cancer based on research progress in other solid tumors.
Collapse
Affiliation(s)
- Yuting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tongzuo Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoqun Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
7
|
Wyatt PB, Satalich J, Cyrus J, O'Neill C, O'Connell R. Biochemical markers of postsurgical knee arthrofibrosis: A systematic review. J Orthop 2023; 35:1-6. [PMID: 36325249 PMCID: PMC9619298 DOI: 10.1016/j.jor.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Postsurgical knee arthrofibrosis is a common complication associated with pain and limited range of motion. Although the mechanism is unclear, many biochemical and genetic markers have been identified within arthrofibrotic knees. The purpose of this systematic review is to synthesize the many biochemical and genetic markers that have been associated with surgery-induced knee arthrofibrosis in order to better guide future therapeutic endeavors. Methods A thorough search of literature was conducted on April 27, 2022. Seventeen studies met inclusion criteria for this systematic review. Inclusion criteria for this study were as follows: title or abstract discussed biochemical and genetic markers associated with postoperative knee arthrofibrosis, study design included human and/or animal subjects. Results A wide variety of genetic biomarkers (mRNA), proteins/enzymes, and cytokines were identified in both animal models and human subjects with postsurgical knee arthrofibrosis. These included various extracellular matrix-encoding mRNA sequences, matrix metalloproteinases, proteins and mRNA sequences involved in Transforming Growth Factor-β signaling, and interleukin-family cytokines to name just a few. Conclusion There are many biomarkers found in postsurgical arthrofibrotic knees. TGF-β, and mRNA/proteins that participate in TGF-β signaling (i.e., LOX, SERPINE1, PAI-1/Akt/mTOR, BMP-2), appear to be particularly common. Future comparative studies should aim to determine which of these are most relevant, and therefore, worthwhile therapeutic targets.
Collapse
Affiliation(s)
- Phillip B. Wyatt
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James Satalich
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - John Cyrus
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Conor O'Neill
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Robert O'Connell
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
8
|
Song L, Liu S, Zhao S. Everolimus (RAD001) combined with programmed death-1 (PD-1) blockade enhances radiosensitivity of cervical cancer and programmed death-ligand 1 (PD-L1) expression by blocking the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) pathway. Bioengineered 2022; 13:11240-11257. [PMID: 35485300 PMCID: PMC9208494 DOI: 10.1080/21655979.2022.2064205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) is the 4th most prevalent malignancy in females. This study explored the mechanism of everolimus (RAD001) combined with programmed death-1 (PD-1) blockade on radiosensitivity by phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and autophagy in CC cells. Low-radiosensitive CaSki cells were selected as study objects. After RAD001 treatment, PI3K/AKT/mTOR pathway activation, autophagy, migration and invasion abilities, autophagy-related proteins (LC3-I, LC3-II, and p62), and PD-L1 expression in CC cells were detected. After triple treatment of radiotherapy (RT), RAD001, and PD-1 blockade to the CC mouse models, tumor weight and volume were recorded. Ki67 expression, the number of CD8 + T cells, and the ability to produce IFN-γ and TNF-α in tumor tissues were determined. RAD001 promoted autophagy by repressing PI3K/AKT/mTOR pathway, augmented RT-induced apoptosis, and weakened migration and invasion, thereby increasing CC cell radiosensitivity. RAD001 elevated RT-induced PD-L1 level. RT combined with RAD001 and PD-1 blockade intensified the inhibitory effect of RT on tumor growth, reduced the amount of Ki67-positive cells, enhanced radiosensitivity of CC mice, and increased the quantity and killing ability of CD8 + T cells. Briefly, RAD001 combined with PD-1 blockade increases radiosensitivity of CC by impeding the PI3K/AKT/mTOR pathway and potentiating cell autophagy.
Collapse
Affiliation(s)
- Lili Song
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shikai Liu
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Sufen Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Gui Z, Suo C, Tao J, Wang Z, Zheng M, Fei S, Chen H, Sun L, Han Z, Ju X, Zhang H, Gu M, Tan R. Everolimus Alleviates Renal Allograft Interstitial Fibrosis by Inhibiting Epithelial-to-Mesenchymal Transition Not Only via Inducing Autophagy but Also via Stabilizing IκB-α. Front Immunol 2022; 12:753412. [PMID: 35140705 PMCID: PMC8818677 DOI: 10.3389/fimmu.2021.753412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Chronic allograft dysfunction (CAD) is the major cause of late graft loss in long-term renal transplantation. In our previous study, we found that epithelial–mesenchymal transition (EMT) is a significant event in the progression of renal allograft tubulointerstitial fibrosis, and impaired autophagic flux plays a critical role in renal allograft fibrosis. Everolimus (EVR) has been reported to be widely used to prevent the progression of organ fibrosis and graft rejection. However, the pharmacological mechanism of EVR in kidney transplantation remains to be determined. We used CAD rat model and the human kidney 2 (HK2) cell line treated with tumor necrosis factor-α (TNF-α) and EVR to examine the role of EVR on TNF-α-induced EMT and transplanted renal interstitial fibrosis. Here, we found that EVR could attenuate the progression of EMT and renal allograft interstitial fibrosis, and also activate autophagy in vivo. To explore the mechanism behind it, we detected the relationship among EVR, autophagy level, and TNF-α-induced EMT in HK2 cells. Our results showed that autophagy was upregulated upon mTOR pathway inhibition by EVR, which could significantly reduce expression of TNF-α-induced EMT. However, the inhibition of EVR on TNF-α-induced EMT was partly reversed following the addition of autophagy inhibitor chloroquine. In addition, we found that TNF-α activated EMT through protein kinase B (Akt) as well as nuclear factor kappa B (NF-κB) pathway according to the RNA sequencing, and EVR’s effect on the EMT was only associated with IκB-α stabilization instead of the Akt pathway. Together, our findings suggest that EVR may retard impaired autophagic flux and block NF-κB pathway activation, and thereby prevent progression of TNF-α-induced EMT and renal allograft interstitial fibrosis.
Collapse
Affiliation(s)
- Zeping Gui
- Department of Urology, the Second Affiliated Hospital With Nanjing Medical University, Nanjing, China
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Xiaobing Ju
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Hengcheng Zhang
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Ruoyun Tan, ; Min Gu, ; Hengcheng Zhang,
| | - Min Gu
- Department of Urology, the Second Affiliated Hospital With Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan, ; Min Gu, ; Hengcheng Zhang,
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan, ; Min Gu, ; Hengcheng Zhang,
| |
Collapse
|
10
|
Ganzleben I, Neurath MF, Becker C. Autophagy in Cancer Therapy-Molecular Mechanisms and Current Clinical Advances. Cancers (Basel) 2021; 13:cancers13215575. [PMID: 34771737 PMCID: PMC8583685 DOI: 10.3390/cancers13215575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Autophagy is the capability of cells to dismantle and recycle parts of themselves. This process is closely intertwined with other crucial cell functions, such as growth and control of metabolism. Autophagy is oftentimes dysregulated in cancer and offers established and advanced tumors protection against a lack of nutrients and an advantage regarding proliferation. This review will present an overview of the basics of human autophagy, its dysregulation in cancer, and approaches to target autophagy in cancer treatment in recent and current clinical trials as well as new findings of preclinical research. Abstract Autophagy is a crucial general survival tactic of mammalian cells. It describes the capability of cells to disassemble and partially recycle cellular components (e.g., mitochondria) in case they are damaged and pose a risk to cell survival or simply if their resources are urgently needed elsewhere at the time. Autophagy-associated pathomechanisms have been increasingly recognized as important disease mechanisms in non-malignant (neurodegeneration, diffuse parenchymal lung disease) and malignant conditions alike. However, the overall consequences of autophagy for the organism depend particularly on the greater context in which autophagy occurs, such as the cell type or whether the cell is proliferating. In cancer, autophagy sustains cancer cell survival under challenging, i.e., resource-depleted, conditions. However, this leads to situations in which cancer cells are completely dependent on autophagy. Accordingly, autophagy represents a promising yet complex target in cancer treatment with therapeutically induced increase and decrease of autophagic flux as important therapeutic principles.
Collapse
Affiliation(s)
- Ingo Ganzleben
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.G.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.G.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.G.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|