1
|
Zhang S, Huang Y, Gao L, Chen Y, Dai H. Highly integrated and compact transduction strategy for multidimensional sensing: Near infrared light mediated transmission of optical, electrical and visual signals for ovarian cancer marker assay. Biosens Bioelectron 2025; 277:117224. [PMID: 39924358 DOI: 10.1016/j.bios.2025.117224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/29/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Mediating effective signal conversion strategies through intermediate parameters to develop easily integrated smart sensing platforms remains a challenge. Herein, a compact and miniaturized optical, electrical and visual sensor was constructed through reasonably designing and assembling three sub-sensors, which can simultaneously and independently feedback signal changes brought by near-infrared (NIR) light. Concretely, the thermal effect induced by multifunctional V2C MQDs@polyaniline@NiFe2O4 with excellent photothermal performance was employed to regulate the signal output of luminescence, color and resistance in multilayer sensing chip, which the chip was formed by attaching thermochromic paper and thermoelectric module layer-by-layer to the nonconductive backside of transparent indium tin oxide electrode modified with electrochemiluminescent (ECL) signal probe. Additionally, the pleasant luminescent property of V2C MQDs and outstanding electrocatalytic ability of NiFe2O4 endowed this probe with another role in providing highly sensitive ECL signal transduction. As a result, the multifunctional probe could convert light into thermal energy under the NIR light irradiation, realizing temperature enhanced ECL response, temperature initiated chameleon paper (CoCl2·6H2O) with thermochromic behavior for intuitive temperature visualization output and thermoelectrical module for high-resolution resistance analysis. Ultimately, the photomodulated multimode sensing platform realized sensitive lipolysis stimulated lipoprotein receptor detection with a wide linear range from 10-6 to 10 ng/mL, excellent selectivity, good stability and high accuracy. The successful application of intermediate parameter driving and crosstalk-free multidimensional signal processing, offering an innovative regulating strategy for promoting the development of multifunctional signal conversion devices.
Collapse
Affiliation(s)
- Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Yitian Huang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350108, China
| | - Lihong Gao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Yanjie Chen
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Hong Dai
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| |
Collapse
|
2
|
Jin B, Miao Z, Pan J, Zhang Z, Yang Y, Zhou Y, Jin Y, Niu Z, Xu Q. The emerging role of glycolysis and immune evasion in ovarian cancer. Cancer Cell Int 2025; 25:78. [PMID: 40045411 PMCID: PMC11881340 DOI: 10.1186/s12935-025-03698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
Ovarian cancer (OC) is one of the three most common malignant tumors of the female reproductive system, with the highest mortality rate among gynecologic malignancies. Like other tumors, OC cells undergo metabolic reprogramming phenomenon and convert glucose metabolism into "aerobic glycolysis" and generate a high concentration of lactate, i.e., the "Warburg effect", which provides a large amount of energy and corresponding intermediary metabolites for their survival, reproduction and metastasis. Numerous studies have shown that targeted inhibition of aerobic glycolysis and lactate metabolism is a promising strategy to enhance the sensitivity of cancer cells to immunotherapy. Therefore, this review summarizes the metabolic features of glycolysis in OC cells and highlights how abnormal lactate concentration affects the differentiation, metabolism, and function of infiltrating immune cells, which contributes to immunosuppression, and how targeted inhibition of this phenomenon may be a potential strategy to enhance the therapeutic efficacy of OC.
Collapse
Affiliation(s)
- Bowen Jin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zehua Miao
- Dalian Medical University, Dalian, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Zhang
- Department of Oncology, Hangzhou Cancer Hospital, Zhejiang, Hangzhou, 310002, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yidong Zhou
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanxiang Jin
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Niu
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Hebda-Bauer EK, Hagenauer MH, Munro DB, Blandino P, Meng F, Arakawa K, Stead JDH, Chitre AS, Ozel AB, Mohammadi P, Watson SJ, Flagel SB, Li J, Palmer AA, Akil H. Bioenergetic-related gene expression in the hippocampus predicts internalizing vs. externalizing behavior in an animal model of temperament. Front Mol Neurosci 2025; 18:1469467. [PMID: 40103584 PMCID: PMC11913853 DOI: 10.3389/fnmol.2025.1469467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
Externalizing and internalizing behavioral tendencies underlie many psychiatric and substance use disorders. These tendencies are associated with differences in temperament that emerge early in development via the interplay of genetic and environmental factors. To better understand the neurobiology of temperament, we have selectively bred rats for generations to produce two lines with highly divergent behavior: bred Low Responders (bLRs) are highly inhibited and anxious in novel environments, whereas bred High Responders (bHRs) are highly exploratory, sensation-seeking, and prone to drug-seeking behavior. Recently, we delineated these heritable differences by intercrossing bHRs and bLRs (F0-F1-F2) to produce a heterogeneous F2 sample with well-characterized lineage and behavior (exploratory locomotion, anxiety-like behavior, Pavlovian conditioning). The identified genetic loci encompassed variants that could influence behavior via many mechanisms, including proximal effects on gene expression. Here we measured gene expression in male and female F0s (n = 12 bHRs, 12 bLRs) and in a large sample of heterogeneous F2s (n = 250) using hippocampal RNA-Seq. This enabled triangulation of behavior with both genetic and functional genomic data to implicate specific genes and biological pathways. Our results show that bHR/bLR differential gene expression is robust, surpassing sex differences in expression, and predicts expression associated with F2 behavior. In F0 and F2 samples, gene sets related to growth/proliferation are upregulated with bHR-like behavior, whereas gene sets related to mitochondrial function, oxidative stress, and microglial activation are upregulated with bLR-like behavior. Integrating our F2 RNA-Seq data with previously-collected whole genome sequencing data identified genes with hippocampal expression correlated with proximal genetic variation (cis-expression quantitative trait loci or cis-eQTLs). These cis-eQTLs successfully predict bHR/bLR differential gene expression based on F0 genotype. Sixteen of these genes are associated with cis-eQTLs colocalized within loci we previously linked to behavior and are strong candidates for mediating the influence of genetic variation on behavioral temperament. Eight of these genes are related to bioenergetics. Convergence between our study and others targeting similar behavioral traits revealed five more genes consistently related to temperament. Overall, our results implicate hippocampal bioenergetic regulation of oxidative stress, microglial activation, and growth-related processes in shaping behavioral temperament, thereby modulating vulnerability to psychiatric and addictive disorders.
Collapse
Affiliation(s)
- Elaine K Hebda-Bauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Megan H Hagenauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Daniel B Munro
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Peter Blandino
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Fan Meng
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Keiko Arakawa
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - John D H Stead
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - A Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Pejman Mohammadi
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Stanley J Watson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Shelly B Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Jun Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Cui Y, Sun Y, Li D, Zhang Y, Zhang Y, Cao D, Cao X. The crosstalk among the physical tumor microenvironment and the effects of glucose deprivation on tumors in the past decade. Front Cell Dev Biol 2023; 11:1275543. [PMID: 38020920 PMCID: PMC10646288 DOI: 10.3389/fcell.2023.1275543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The occurrence and progression of tumors are inseparable from glucose metabolism. With the development of tumors, the volume increases gradually and the nutritional supply of tumors cannot be fully guaranteed. The tumor microenvironment changes and glucose deficiency becomes the common stress environment of tumors. Here, we discuss the mutual influences between glucose deprivation and other features of the tumor microenvironment, such as hypoxia, immune escape, low pH, and oxidative stress. In the face of a series of stress responses brought by glucose deficiency, different types of tumors have different coping mechanisms. We summarize the tumor studies on glucose deficiency in the last decade and review the genes and pathways that determine the fate of tumors under harsh conditions. It turns out that most of these genes help tumor cells survive in glucose-deprivation conditions. The development of related inhibitors may bring new opportunities for the treatment of tumors.
Collapse
Affiliation(s)
- Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuzheng Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
An Y, Wang C, Fan B, Wang Z, Li Y, Kong F, Zhou C, Cao Z, Wang M, Sun H, Zhao S, Gong Y. LSR targets YAP to modulate intestinal Paneth cell differentiation. Cell Rep 2023; 42:113118. [PMID: 37703178 DOI: 10.1016/j.celrep.2023.113118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/26/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Lipolysis-stimulated lipoprotein receptor (LSR) is a multi-functional protein that is best known for its roles in assembly of epithelial tricellular tight junctions and hepatic clearance of lipoproteins. Here, we investigated whether LSR contributes to intestinal epithelium homeostasis and pathogenesis of intestinal disease. By using multiple conditional deletion mouse models and ex vivo cultured organoids, we find that LSR elimination in intestinal stem cells results in the disappearance of Paneth cells without affecting the differentiation of other cell lineages. Mechanistic studies reveal that LSR deficiency increases abundance of YAP by modulating its phosphorylation and proteasomal degradation. Using gain- and loss-of-function studies, we show that LSR protects against necrotizing enterocolitis through enhancement of Paneth cell differentiation in small-intestinal epithelium. Thus, this study identifies LSR as an upstream negative regulator of YAP activity, an essential factor for Paneth cell differentiation, and a potential therapeutic target for necrotizing enterocolitis.
Collapse
Affiliation(s)
- Yanan An
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China; Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
| | - Chao Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baozhen Fan
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Ziqi Wang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Ying Li
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Feng Kong
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhang Cao
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Mingxia Wang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Hui Sun
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Shengtian Zhao
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China; Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Yongfeng Gong
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China; Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China.
| |
Collapse
|
6
|
Penugurti V, Mishra YG, Manavathi B. AMPK: An odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188785. [PMID: 36031088 DOI: 10.1016/j.bbcan.2022.188785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is a unique but complex biochemical adaptation that allows solid tumors to tolerate various stresses that challenge cancer cells for survival. Under conditions of metabolic stress, mammalian cells employ adenosine monophosphate (AMP)-activated protein kinase (AMPK) to regulate energy homeostasis by controlling cellular metabolism. AMPK has been described as a cellular energy sensor that communicates with various metabolic pathways and networks to maintain energy balance. Earlier studies characterized AMPK as a tumor suppressor in the context of cancer. Later, a paradigm shift occurred in support of the oncogenic nature of AMPK, considering it a contextual oncogene. In support of this, various cellular and mouse models of tumorigenesis and clinicopathological studies demonstrated increased AMPK activity in various cancers. This review will describe AMPK's pro-tumorigenic activity in various malignancies and explain the rationale and context for using AMPK inhibitors in combination with anti-metabolite drugs to treat AMPK-driven cancers.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yasaswi Gayatri Mishra
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
7
|
Wang Y, Chen B, Xiao M, Wang X, Peng Y. Brucea javanica Oil Emulsion Promotes Autophagy in Ovarian Cancer Cells Through the miR-8485/LAMTOR3/mTOR/ATG13 Signaling Axis. Front Pharmacol 2022; 13:935155. [PMID: 35959437 PMCID: PMC9358144 DOI: 10.3389/fphar.2022.935155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Ovarian cancer is a common malignant tumor of the female reproductive tract, with the highest mortality rate. At present, no effective approaches to improve the survival rate exist. B. javanica Oil Emulsion (BJOE), an extract from B. javanica (L.) Merr. [Simaroubaceae], exhibits antitumor effects and can increase the sensitivity of radiotherapy and chemotherapy in many types of cancers. MiR-8485, a discovered miRNA, has been shown to be involved in the occurrence and development of tumors. The purpose of this study was to investigate the effect of BJOE on the regulation of mammalian rapamycin target protein (mTOR) autophagy signal pathway and related autophagy factors on ovarian cancer cells through miR-8485. Methods: The main chemical constituents of BJOE were determined by UHPLC-MS/MS. Detection of miR-8485 expression in ovarian cancer cells treated with BJOE by quantitative reverse transcription polymerase chain reaction (qRT-PCR). CCK8 experiment and flow cytometry were used to observe the effects of BJOE and overexpression of miR-8485 on cell proliferation and apoptosis. Then, monodansylcadaverine (MDC) fluorescence staining was used to observe the changes of autophagy vesicles before and after the effect of BJOE and overexpressed miR-8485 on cancer cells. Next, the binding sites between miR8485 and mammalian rapamycin target protein activator 3 (LAMTOR3) were detected by double luciferase reporter assay. Furthermore, qRT-PCR and Western blot experiments were used to explore the changes of autophagy-related factors LAMTOR3, mTOR and autophagy-related 13 (ATG13), and microtubule associated protein 1 light chain 3 beta (LC3-Ⅱ) after BJOE and overexpression of miR-8485, in addition to autophagy inhibitor (3-MA) for rescue experiment verification. Results: The qRT-PCR results showed that the expression of miR-8485 increased after BJOE treatment in the SKOV3 cell. The CCK8 assay and flow cytometry analysis revealed that both BJOE and miR-8485 overexpression inhibited the proliferation and promoted the apoptosis of the SKOV3 cell. MDC fluorescence staining showed that BJOE and miR-8485 overexpression led to a significant increase in autophagy vesicles in the SKOV3 cell. Double luciferase reporter assay confirmed the existence of binding sites between miR8485 and LAMTOR3. The results of qRT-PCR and Western blot showed that BJOE and overexpressed miR-8485 downregulated the expression of LAMTOR3 and mTOR and up-regulated the expression of ATG13 and LC3-Ⅱ. Conclusion: 1) MiR-8485 may be the key factor of BJOE in promoting autophagy and apoptosis and inhibiting cell proliferation of ovarian cancer cells; 2) BJOE may play an antitumor role by regulating LAMTOR3/mTOR/ATG13 signaling axis through miR-8485 to promote autophagy in ovarian cancer cells.
Collapse
Affiliation(s)
- Yihan Wang
- The Second Clinical College, Hainan Medical University, Haikou, China
| | - Bocen Chen
- Key Laboratory of Molecular Biology, School of Basic Medicine and Sciences, Hainan Medical University, Haikou, China
| | - Man Xiao
- Key Laboratory of Molecular Biology, School of Basic Medicine and Sciences, Hainan Medical University, Haikou, China
| | - Xiaoli Wang
- Hainan Women and Children’s Medical Center, Haikou, China
| | - Yunhua Peng
- The First Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Yunhua Peng,
| |
Collapse
|
8
|
Nagase Y, Hiramatsu K, Funauchi M, Shiomi M, Masuda T, Kakuda M, Nakagawa S, Miyoshi A, Matsuzaki S, Kobayashi E, Kimura T, Serada S, Ueda Y, Naka T, Kimura T. Anti-lipolysis-stimulated lipoprotein receptor monoclonal antibody as a novel therapeutic agent for endometrial cancer. BMC Cancer 2022; 22:679. [PMID: 35729527 PMCID: PMC9210735 DOI: 10.1186/s12885-022-09789-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/16/2022] [Indexed: 12/29/2022] Open
Abstract
Background Endometrial cancer (EC) is a common gynecologic malignancy and patients with advanced and recurrent EC have a poor prognosis. Although chemotherapy is administered for those patients, the efficacy of current chemotherapy is limited. Therefore, it is necessary to develop novel therapeutic agents for EC. In this study, we focused on lipolysis-stimulated lipoprotein receptor (LSR), a membrane protein highly expressed in EC cells, and developed a chimeric chicken–mouse anti-LSR monoclonal antibody (mAb). This study investigated the antitumor effect of an anti-LSR mAb and the function of LSR in EC. Methods We examined the expression of LSR in 228 patients with EC using immunohistochemistry and divided them into two groups: high-LSR (n = 153) and low-LSR groups (n = 75). We developed a novel anti-LSR mAb and assessed its antitumor activity in an EC cell xenograft mouse model. Pathway enrichment analysis was performed using protein expression data of EC samples. LSR-knockdown EC cell lines (HEC1 and HEC116) were generated by transfected with small interfering RNA and used for assays in vitro. Results High expression of LSR was associated with poor overall survival (hazard ratio: 3.53, 95% confidence interval: 1.35–9.24, p = 0.01), advanced stage disease (p = 0.045), deep myometrial invasion (p = 0.045), and distant metastasis (p < 0.01). In EC with deep myometrial invasion, matrix metalloproteinase (MMP) 2 was highly expressed along with LSR. Anti-LSR mAb significantly inhibited the tumor growth in EC cell xenograft mouse model (tumor volume, 407.1 mm3versus 726.3 mm3, p = 0.019). Pathway enrichment analysis identified the mitogen-activated protein kinase (MAPK) pathway as a signaling pathway associated with LSR expression. Anti-LSR mAb suppressed the activity of MAPK in vivo. In vitro assays using EC cell lines demonstrated that LSR regulated cell proliferation, invasion, and migration through MAPK signaling, particularly MEK/ERK signaling and membrane-type 1 MMP (MT1-MMP) and MMP2. Moreover, ERK1/2-knockdown suppressed cell proliferation, invasion, migration, and the expression of MT1-MMP and MMP2. Conclusions Our results suggest that LSR contributes to tumor growth, invasion, metastasis, and poor prognosis of EC through MAPK signaling. Anti-LSR mAb is a potential therapeutic agent for EC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09789-6.
Collapse
Affiliation(s)
- Yoshikazu Nagase
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kosuke Hiramatsu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masashi Funauchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Clinical Immunology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan.,Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Iwate, Japan.,Department of Clinical Immunology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mayu Shiomi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuo Masuda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Kakuda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Nakagawa
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ai Miyoshi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Matsuzaki
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Gynecology, Osaka International Cancer Institute, Osaka, Japan
| | - Eiji Kobayashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihiro Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Serada
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Iwate, Japan.,Department of Clinical Immunology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tetsuji Naka
- Division of Clinical Immunology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan.,Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Iwate, Japan.,Department of Clinical Immunology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|