1
|
Li M, Sun D, Song N, Chen X, Zhang X, Zheng W, Yu Y, Han C. Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain‑of‑function and targeting therapy (Review). Oncol Rep 2023; 50:162. [PMID: 37449494 PMCID: PMC10394732 DOI: 10.3892/or.2023.8599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most widespread malignancies worldwide. p53, as a transcription factor, can play its role in tumor suppression by activating the expression of numerous target genes. However, p53 is one of the most commonly mutated genes, which frequently harbors missense mutations. These missense mutations are nucleotide substitutions that result in the substitution of an amino acid in the DNA binding domain. Most p53 mutations in HNSCC are missense mutations and the mutation rate of p53 reaches 65‑85%. p53 mutation not only inhibits the tumor suppressive function of p53 but also provides novel functions to facilitate tumor recurrence, called gain‑of‑function (GOF). The present study focused on the prevalence and clinical relevance of p53 mutations in HNSCC, and further described how mutant p53 accumulates. Moreover, mutant p53 in HNSCC can interact with proteins, RNA, and exosomes to exert effects on proliferation, migration, invasion, immunosuppression, and metabolism. Finally, several treatment strategies have been proposed to abolish the tumor‑promoting function of mutant p53; these strategies include reactivation of mutant p53 into wild‑type p53, induction of mutant p53 degradation, enhancement of the synthetic lethality of mutant p53, and treatment with immunotherapy. Due to the high frequency of p53 mutations in HNSCC, a further understanding of the mechanism of mutant p53 may provide potential applications for targeted therapy in patients with HNSCC.
Collapse
Affiliation(s)
- Minmin Li
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Dongyuan Sun
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
- Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ning Song
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xi Chen
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xinyue Zhang
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Wentian Zheng
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Yang Yu
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
- Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Chengbing Han
- Department of Stomatology, First Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
2
|
Involvement of RUVBL1 in WNT/β-Catenin Signaling in Oral Squamous Cell Carcinoma. DISEASE MARKERS 2022; 2022:3398492. [PMID: 35493294 PMCID: PMC9054432 DOI: 10.1155/2022/3398492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of head and neck squamous cell carcinoma (HNSCC), but the causes and molecular mechanisms remain unclear. The wingless-integrated/β-catenin (WNT/β-catenin) signaling pathway plays a vital role in cancer cell proliferation, differentiation, and metastasis, including OSCC. To screen potential β-catenin-associated genes involved in OSCC, the intersection of these genes in the STRING and IMEx databases was assessed using differential expression genes (DEG) from public microarrays, and 22 were further selected to construct a β-catenin-protein interaction network. The top 14 hub genes (node degree > 10) within the network were selected. Pearson's correlation analysis showed that β-catenin expression correlated positively with the expression of 11 genes, including AR, BIRC5, CDK6, DKK1, GSK3B, MET, MITF, PARD3, RUVBL1, SLC9A3R1, and SMAD7. A heat map of overall hub gene survival was created, and elevated expression of DKK1 and RUVBL1 was associated with poor survival using the Mantel-Cox test. To identify the function of RUVBL1, colony formation assay, transwell assay, and western blotting revealed that knock-down of RUVBL1 by siRNA decreased H157 and Cal-27 cell proliferation and metastasis by inhibiting β-catenin signaling. These findings suggest that RUVBL1 may serve as a diagnostic and prognostic biomarker for OSCC, as well as a therapeutic target, and may help to uncover additional molecular mechanisms of β-catenin-driven OSCC tumorigenesis.
Collapse
|
3
|
Jiang L, Ge W, Cui Y, Wang X. The regulation of long non-coding RNA 00958 (LINC00958) for oral squamous cell carcinoma (OSCC) cells death through absent in melanoma 2 (AIM2) depending on microRNA-4306 and Sirtuin1 (SIRT1) in vitro. Bioengineered 2021; 12:5085-5098. [PMID: 34384029 PMCID: PMC8806533 DOI: 10.1080/21655979.2021.1955561] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been proposed as potential targets in OSCC gene therapy. Thus, the study aims to analyze how they exert functions in OSCC. LINC00958, AIM2, Gasdermin D (GSDMD) and tumor protein p53 (TP53) expression levels are analyzed by Quantitative Real-time PCR (qPCR) or Western blotting (WB) in OSCC cells lines. The roles of LINC00958 in cell proliferation, cell death, and GSDMD expression respectively were analyzed by Cell Counting Kit-8 (CCK8) assay, flow cytometry and Immunofluorescence (IF) assay. In addition, expressions of pyroptosis- and autophagy-related proteins are evaluated by WB detection. The targeted binding of LINC00958 and miR-4306 or AIM2 mRNA is predicted by bioinformatics analysis and detected by biodual luciferase system. RIP and qPCR assays analyze whether LINC00958 interacts with SIRT1. We found that LINC00958 showed upregulation in OSCC cells compared to normal oral epithelial cells. LINC00958 silencing significantly suppressed OSCC cell proliferation, induced cell death and reduced autophagy. LINC00958 regulated the levels of miR-4306 which binds to the 3'UTR of AIM2, and interacts with and modulates SIRT1 protein expression. LINC00958 regulated GSDMD and AIM2 levels, as well as p53 and SIRT1 levels. SIRT1 overexpression markedly reversed aforementioned effects of LINC00958. LINC00958 not only downregulated miR-4306 levels to activate the pyroptosis pathway mediated by AIM2 and promoted cancer cell survival but also induced a decrease in SIRT protein expression to further reduce p53 levels.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang. China
| | - Wenyu Ge
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University. Harbin Institute of Technology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Yifei Cui
- Department of Pathology, Harbin Medical University Cancer Hospital, Heilongjiang, China
| | - Xiaofeng Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| |
Collapse
|
4
|
Nakamura A, Kakihara Y, Funayama A, Haga K, Mikami T, Kobayashi D, Yoshida Y, Izumi K, Kobayashi T, Saeki M. HEATR1, a novel interactor of Pontin/Reptin, stabilizes Pontin/Reptin and promotes cell proliferation of oral squamous cell carcinoma. Biochem Biophys Res Commun 2021; 557:294-301. [PMID: 33894417 DOI: 10.1016/j.bbrc.2021.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Pontin and Reptin are closely related proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They form a hetero-oligomeric complex, Pontin/Reptin, which is involved in protein stability and assembly of the protein complexes as a molecular chaperone. Overexpression of Pontin and Reptin in tumor cells has been reported and is implicated in the development of various cancers. However, the molecular mechanism of Pontin/Reptin function in oral squamous cell carcinoma (OSCC) development remains unclear. Here, we identify HEAT repeat-containing protein 1 (HEATR1) as a novel binding factor of Pontin/Reptin. Functionally, HEATR1 stabilizes Pontin/Reptin and positively regulates OSCC cell proliferation by activating mTOR and pre-rRNA synthesis. We also find that HEATR1 expression is markedly upregulated in tumor region of OSCC tissue. Hence, we propose that HEATR1 is involved in the regulation of mTOR and ribosome biogenesis as a potential protein stabilizer of Pontin/Reptin in OSCC.
Collapse
Affiliation(s)
- Akihiko Nakamura
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan; Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Akinori Funayama
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kenta Haga
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Toshihiko Mikami
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Daiki Kobayashi
- Omics Unit, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Tadaharu Kobayashi
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|