1
|
Chang SH, George W, Nelson DC. Transcriptional regulation of development by SMAX1-LIKE proteins - targets of strigolactone and karrikin/KAI2 ligand signaling. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1888-1906. [PMID: 39869020 DOI: 10.1093/jxb/eraf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE (SMXL) proteins comprise a family of plant growth regulators that includes downstream targets of the karrikin (KAR)/KAI2 ligand (KL) and strigolactone (SL) signaling pathways. Following the perception of KAR/KL or SL signals by α/β hydrolases, some types of SMXL proteins are polyubiquitinated by an E3 ubiquitin ligase complex containing the F-box protein MORE AXILLARY GROWTH2 (MAX2)/DWARF3 (D3), and proteolyzed. Because SMXL proteins interact with TOPLESS (TPL) and TPL-related (TPR) transcriptional co-repressors, SMXL degradation initiates changes in gene expression. This simplified model of SMXL regulation and function in plants must now be revised in light of recent discoveries. It has become apparent that SMXL abundance is not regulated by KAR/KL or SL alone, and that some SMXL proteins are not regulated by MAX2/D3 at all. Therefore, SMXL proteins should be considered as signaling hubs that integrate multiple cues. Here we review the current knowledge of how SMXL proteins impose transcriptional regulation of plant development and environmental responses. SMXL proteins can bind DNA directly and interact with transcriptional regulators from several protein families. Multiple mechanisms of downstream genetic control by SMXL proteins have been identified recently that do not involve the recruitment of TPL/TPR, expanding the paradigm of SMXL function.
Collapse
Affiliation(s)
- Sun Hyun Chang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Wesley George
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Lee HU, Shim S, Chung MN, Lee T, Park W, Kim TH, Lee KH, Woo KS, Nam SS, Kim MY, Lee SH. Transcriptomic analysis for the gamma-ray-induced sweetpotato mutants with altered stem growth pattern. Front Genet 2024; 15:1419399. [PMID: 39144719 PMCID: PMC11322061 DOI: 10.3389/fgene.2024.1419399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Sweetpotato faces breeding challenges due to physiological and genomic issues. Gamma radiation is a novel approach for inducing genetic variation in crops. We analyzed the transcriptomic changes in gamma ray-induced sweetpotato mutants with altered stem development compared with those in the wild-type 'Tongchaeru' cultivar. Methods RNA sequencing analyses were performed to identify changes in the expression of genes related to stem development. Results Transcriptomic analysis identified 8,931 upregulated and 6,901 downregulated genes, including the upregulation of the auxin-responsive SMALL AUXIN UP RNA (SAUR) and three PHYTOCHROME INTERACTING FACTOR 4 (PIF4) genes. PIF4 is crucial for regulating the expression of early auxin-responsive SAUR genes and stem growth in Arabidopsis thaliana. In the mutant, several genes related to stem elongation, including PIF4 and those involved in various signaling pathways such as auxin and gibberellin, were upregulated. Discussion Our results suggest that gamma ray-induced mutations influence auxin-dependent stem development by modulating a complex regulatory network involving the expression of PIF4 and SAUR genes, and other signaling pathways such as gibberellin and ethylene signaling genes. This study enhances our understanding of the regulatory mechanisms underlying stem growth in sweetpotato, providing valuable insights for genomics-assisted breeding efforts.
Collapse
Affiliation(s)
- Hyeong-Un Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Mi Nam Chung
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Taeyoung Lee
- Bioinformatics Institute, Macrogen Inc., Seoul, Republic of Korea
| | - Won Park
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Tae Hwa Kim
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Kyo Hwui Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Koan Sik Woo
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Sang-Sik Nam
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Moon Young Kim
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Basso MF, Girardin G, Vergata C, Buti M, Martinelli F. Genome-wide transcript expression analysis reveals major chickpea and lentil genes associated with plant branching. FRONTIERS IN PLANT SCIENCE 2024; 15:1384237. [PMID: 38962245 PMCID: PMC11220206 DOI: 10.3389/fpls.2024.1384237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
The search for elite cultivars with better architecture has been a demand by farmers of the chickpea and lentil crops, which aims to systematize their mechanized planting and harvesting on a large scale. Therefore, the identification of genes associated with the regulation of the branching and architecture of these plants has currently gained great importance. Herein, this work aimed to gain insight into transcriptomic changes of two contrasting chickpea and lentil cultivars in terms of branching pattern (little versus highly branched cultivars). In addition, we aimed to identify candidate genes involved in the regulation of shoot branching that could be used as future targets for molecular breeding. The axillary and apical buds of chickpea cultivars Blanco lechoso and FLIP07-318C, and lentil cultivars Castellana and Campisi, considered as little and highly branched, respectively, were harvested. A total of 1,624 and 2,512 transcripts were identified as differentially expressed among different tissues and contrasting cultivars of chickpea and lentil, respectively. Several gene categories were significantly modulated such as cell cycle, DNA transcription, energy metabolism, hormonal biosynthesis and signaling, proteolysis, and vegetative development between apical and axillary tissues and contrasting cultivars of chickpea and lentil. Based on differential expression and branching-associated biological function, ten chickpea genes and seven lentil genes were considered the main players involved in differentially regulating the plant branching between contrasting cultivars. These collective data putatively revealed the general mechanism and high-effect genes associated with the regulation of branching in chickpea and lentil, which are potential targets for manipulation through genome editing and transgenesis aiming to improve plant architecture.
Collapse
Affiliation(s)
| | | | - Chiara Vergata
- Department of Biology, University of Florence, Florence, Italy
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | | |
Collapse
|
4
|
Liu C, Jiang X, Liu S, Liu Y, Li H, Wang Z, Kan J, Yang Q, Li X. Comprehensive Evolutionary Analysis of the SMXL Gene Family in Rosaceae: Further Insights into Its Origin, Expansion, Diversification, and Role in Regulating Pear Branching. Int J Mol Sci 2024; 25:2971. [PMID: 38474218 DOI: 10.3390/ijms25052971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
SMXL genes constitute a conserved gene family that is ubiquitous in angiosperms and involved in regulating various plant processes, including branching, leaf elongation, and anthocyanin biosynthesis, but little is known about their molecular functions in pear branching. Here, we performed genome-wide identification and investigation of the SMXL genes in 16 angiosperms and analyzed their phylogenetics, structural features, conserved motifs, and expression patterns. In total, 121 SMXLs genes were identified and were classified into four groups. The number of non-redundant SMXL genes in each species varied from 3 (Amborella trichopoda Baill.) to 18 (Glycine max Merr.) and revealed clear gene expansion events over evolutionary history. All the SMXL genes showed conserved structures, containing no more than two introns. Three-dimensional protein structure prediction revealed distinct structures between but similar structures within groups. A quantitative real-time PCR analysis revealed different expressions of 10 SMXL genes from pear branching induced by fruit-thinning treatment. Overall, our study provides a comprehensive investigation of SMXL genes in the Rosaceae family, especially pear. The results offer a reference for understanding the evolutionary history of SMXL genes and provide excellent candidates for studying fruit tree branching regulation, and in facilitating pear pruning and planting strategies.
Collapse
Affiliation(s)
- Chunxiao Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianda Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Susha Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yilong Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Hui Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhonghua Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jialiang Kan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qingsong Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaogang Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Liu G, Li Y, Si J, Lu R, Hui M. Genetic Model Identification and Major QTL Mapping for Petiole Thickness in Non-Heading Chinese Cabbage. Int J Mol Sci 2024; 25:802. [PMID: 38255876 PMCID: PMC10815893 DOI: 10.3390/ijms25020802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Petioles of non-heading Chinese cabbage are not only an important edible part but also a conduit for nutrient transport, holding significant agricultural and research value. In this study, we conducted a comprehensive genetic analysis of petiole-related traits using a segregating population. Modern quantitative genetic approaches were applied to investigate the genetic regulation of petiole thickness. The results indicated that petiole thickness is a quantitative trait, and the identified genetic model was consistent with two pairs of additive-dominant main genes and additive-dominant polygenes (2MG-AD). BSA-seq analysis identified a major effect of QTL controlling petiole thickness on chromosome A09: 42.08-45.09 Mb, spanning 3.01 Mb, designated as QTL-BrLH9. Utilizing InDel markers, the interval was narrowed down to 51 kb, encompassing 14 genes with annotations for 10 of them. Within the interval, four mutated genes were detected. Combined with gene annotation, protein sequence analysis, and homology alignment, it was found that BraA09g063520.3C's homologous gene SMXL6 in Arabidopsis (Arabidopsis thaliana (L.) Heynh) is an inhibitor of the coding and synthesis of the strigolactone pathway. Strigolactone (SLs) plays an important role in plant growth and development. The cloning results showed that multiple frameshift mutations and non-synonymous mutations occurred on the exon. The qPCR results showed that the expression of the gene was significantly different between the two parents at the adult stage, so it was speculated that it would lead to changes in petiole thickness. BraA09g063520.3C was predicted as the final candidate gene.
Collapse
Affiliation(s)
| | | | | | | | - Maixia Hui
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A & F University, Yangling, Xianyang 712100, China; (G.L.); (Y.L.); (J.S.); (R.L.)
| |
Collapse
|
6
|
Ni F, Shah FA, Ren J. Identification and characterization of the karrikins signaling gene SsSMAX1 in Sapium sebiferum. PeerJ 2023; 11:e16610. [PMID: 38089914 PMCID: PMC10712317 DOI: 10.7717/peerj.16610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
SUPPRESSOR OF MAX2 LIKE 1 (SMAX1) is a member of the SUPPRESSOR of MAX2 1‑LIKE family of genes and is known as a target protein of KARRIKIN INSENSITIVE2 (KAI2)-MORE AXILLARY BRANCHES2 (MAX2), which mediates karrikin signaling in Arabidopsis. SMAX1 plays a significant role in seed germination, hypocotyl elongation, and root hair development in Arabidopsis. SMAX1 has not yet been identified and characterized in woody plants. This study identified and characterized SsSMAX1 in Sapium sebiferum and found that SsSMAX1 was highly expressed in the seed, hypocotyl, and root tips of S. sebiferum. SsSMAX1 was functionally characterized by ectopic expression in Arabidopsis. SsSMAX1 overexpression lines of Arabidopsis showed significantly delayed seed germination and produced seedlings with longer hypocotyl and roots than wild-type and Atsmax1 functional mutants. SsSMAX1 overexpression lines of Arabidopsis also had broader and longer leaves and petioles than wild-type and Atsmax1, suggesting that SsSMAX1 is functionally conserved. This study characterizes the SMAX1 gene in a woody and commercially valuable bioenergy plant, Sapium sebiferum. The results of this study are beneficial to future research on the molecular biology of woody plants.
Collapse
Affiliation(s)
- Fang Ni
- Anhui Wenda University of Information Engineering, Hefei, Anhui, China
| | - Faheem Afzal Shah
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| |
Collapse
|
7
|
Seo PJ, Lee HG, Choi HY, Lee S, Park CM. Complexity of SMAX1 signaling during seedling establishment. TRENDS IN PLANT SCIENCE 2023; 28:902-912. [PMID: 37069002 DOI: 10.1016/j.tplants.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Karrikins (KARs) are small butenolide compounds identified in the smoke of burning vegetation. Along with the stimulating effects on seed germination, KARs also regulate seedling vigor and adaptive behaviors, such as seedling morphogenesis, root hair development, and stress acclimation. The pivotal KAR signaling repressor, SUPPRESSOR OF MAX2 1 (SMAX1), plays central roles in these developmental and morphogenic processes through an extensive signaling network that governs seedling responses to endogenous and environmental cues. Here, we summarize the versatile roles of SMAX1 reported in recent years and discuss how SMAX1 integrates multiple growth hormone signals into optimizing seedling establishment. We also discuss the evolutionary relevance of the SMAX1-mediated signaling pathways during the colonization of aqueous plants to terrestrial environments.
Collapse
Affiliation(s)
- Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Hye-Young Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sangmin Lee
- Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
8
|
Zheng X, Liu F, Yang X, Li W, Chen S, Yue X, Jia Q, Sun X. The MAX2-KAI2 module promotes salicylic acid-mediated immune responses in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36738234 DOI: 10.1111/jipb.13463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Arabidopsis MORE AXILLARY GROWTH2 (MAX2) is a key component in the strigolactone (SL) and karrikin (KAR) signaling pathways and regulates the degradation of SUPPRESSOR OF MAX2 1/SMAX1-like (SMAX1/SMXL) proteins, which are transcriptional co-repressors that regulate plant architecture, as well as abiotic and biotic stress responses. The max2 mutation reduces resistance against Pseudomonas syringae pv. tomato (Pst). To uncover the mechanism of MAX2-mediated resistance, we evaluated the resistance of various SL and KAR signaling pathway mutants. The resistance of SL-deficient mutants and of dwarf 14 (d14) was similar to that of the wild-type, whereas the resistance of the karrikin insensitive 2 (kai2) mutant was compromised, demonstrating that the KAR signaling pathway, not the SL signaling pathway, positively regulates the immune response. We measured the resistance of smax1 and smxl mutants, as well as the double, triple, and quadruple mutants with max2, which revealed that both the smax1 mutant and smxl6/7/8 triple mutant rescue the low resistance phenotype of max2 and that SMAX1 accumulation diminishes resistance. The susceptibility of smax1D, containing a degradation-insensitive form of SMAX1, further confirmed the SMAX1 function in the resistance. The relationship between the accumulation of SMAX1/SMXLs and disease resistance suggested that the inhibitory activity of SMAX1 to resistance requires SMXL6/7/8. Moreover, the exogenous application of KAR2 enhanced resistance against Pst, but KAR-induced resistance depended on salicylic acid (SA) signaling. Inhibition of karrikin signaling delayed SA-mediated defense responses and inhibited pathogen-induced protein biosynthesis. Together, we propose that the MAX2-KAI2-SMAX1 complex regulates resistance with the assistance of SMXL6/7/8 and SA signaling and that SMAX1/SMXLs possibly form a multimeric complex with their target transcription factors to fine tune immune responses.
Collapse
Affiliation(s)
- Xiujuan Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Fangqian Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xianfeng Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Sique Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xinwu Yue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Qi Jia
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xinli Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| |
Collapse
|
9
|
Wang Y, Wang K, An T, Tian Z, Dun X, Shi J, Wang X, Deng J, Wang H. Genetic dissection of branch architecture in oilseed rape ( Brassica napus L.) germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:1053459. [PMID: 36388516 PMCID: PMC9650407 DOI: 10.3389/fpls.2022.1053459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Branch architecture is an important factor influencing rapeseed planting density, mechanized harvest, and yield. However, its related genes and regulatory mechanisms remain largely unknown. In this study, branch angle (BA) and branch dispersion degree (BD) were used to evaluate branch architecture. Branch angle exhibited a dynamic change from an increase in the early stage to a gradual decrease until reaching a stable state. Cytological analysis showed that BA variation was mainly due to xylem size differences in the vascular bundle of the branch junction. The phenotypic analysis of 327 natural accessions revealed that BA in six environments ranged from 24.3° to 67.9°, and that BD in three environments varied from 4.20 cm to 21.4 cm, respectively. A total of 115 significant loci were detected through association mapping in three models (MLM, mrMLM, and FarmCPU), which explained 0.53%-19.4% of the phenotypic variations. Of them, 10 loci were repeatedly detected in different environments and models, one of which qBAD.A03-2 was verified as a stable QTL using a secondary segregation population. Totally, 1066 differentially expressed genes (DEGs) were identified between branch adaxial- and abaxial- sides from four extremely large or small BA/BD accessions through RNA sequencing. These DEGs were significantly enriched in the pathways related to auxin biosynthesis and transport as well as cell extension such as indole alkaloid biosynthesis, other glycan degradation, and fatty acid elongation. Four known candidate genes BnaA02g16500D (PIN1), BnaA03g10430D (PIN2), BnaC03g06250D (LAZY1), and BnaC06g20640D (ARF17) were identified by both GWAS and RNA-seq, all of which were involved in regulating the asymmetric distribution of auxins. Our identified association loci and candidate genes provide a theoretical basis for further study of gene cloning and genetic improvement of branch architecture.
Collapse
Affiliation(s)
- Ying Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Kaixuan Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Tanzhou An
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jinwu Deng
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
10
|
Genome-Wide Identification of SMXL Gene Family in Soybean and Expression Analysis of GmSMXLs under Shade Stress. PLANTS 2022; 11:plants11182410. [PMID: 36145811 PMCID: PMC9500757 DOI: 10.3390/plants11182410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
SMXL6,7,8 are important target proteins in strigolactone (SL) signal pathway, which negatively regulate the reception and response of SL signal, and play an important role in regulating plant branching. However, there is a relative lack of research on soybean SMXL gene family. In this study, 31 soybean SMXL genes were identified by phylogenetic analysis and divided into three groups. Based on the analysis of GmSMXL gene’s structure and motif composition, it was found that the GmSMXL members in the same group were similar. The results of cis-element analysis showed that GmSMXL genes may regulate the growth and development of soybean by responding to hormones and environment. Based on the tissue specificity analysis and GR24 treatment, the results showed that four GmSMXLs in G1 group were predominantly expressed in stems, axillary buds and leaves and involved in SL signal pathway. Finally, under shading stress, the expression of four genes in G1 group was slightly different in different varieties, which may be the reason for the difference in branching ability of different varieties under shading stress. We have systematically studied the SMXL gene family in soybean, which may lay a foundation for the study of the function of GmSMXL gene in the future.
Collapse
|
11
|
Sageman-Furnas K, Nurmi M, Contag M, Plötner B, Alseekh S, Wiszniewski A, Fernie AR, Smith LM, Laitinen RAE. A. thaliana Hybrids Develop Growth Abnormalities through Integration of Stress, Hormone and Growth Signaling. PLANT & CELL PHYSIOLOGY 2022; 63:944-954. [PMID: 35460255 PMCID: PMC9282726 DOI: 10.1093/pcp/pcac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Hybrids between Arabidopsis thaliana accessions are important in revealing the consequences of epistatic interactions in plants. F1 hybrids between the A. thaliana accessions displaying either defense or developmental phenotypes have been revealing the roles of the underlying epistatic genes. The interaction of two naturally occurring alleles of the OUTGROWTH-ASSOCIATED KINASE (OAK) gene in Sha and Lag2-2, previously shown to cause a similar phenotype in a different allelic combination in A. thaliana, was required for the hybrid phenotype. Outgrowth formation in the hybrids was associated with reduced levels of salicylic acid, jasmonic acid and abscisic acid in petioles and the application of these hormones mitigated the formation of the outgrowths. Moreover, different abiotic stresses were found to mitigate the outgrowth phenotype. The involvement of stress and hormone signaling in outgrowth formation was supported by a global transcriptome analysis, which additionally revealed that TCP1, a transcription factor known to regulate leaf growth and symmetry, was downregulated in the outgrowth tissue. These results demonstrate that a combination of natural alleles of OAK regulates growth and development through the integration of hormone and stress signals and highlight the importance of natural variation as a resource to discover the function of gene variants that are not present in the most studied accessions of A. thaliana.
Collapse
Affiliation(s)
- Katelyn Sageman-Furnas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Markus Nurmi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Meike Contag
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Björn Plötner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Andrew Wiszniewski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Lisa M Smith
- School of Biosciences and Institute for Sustainable Food, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | |
Collapse
|
12
|
Li Q, Martín-Fontecha ES, Khosla A, White AR, Chang S, Cubas P, Nelson DC. The strigolactone receptor D14 targets SMAX1 for degradation in response to GR24 treatment and osmotic stress. PLANT COMMUNICATIONS 2022; 3:100303. [PMID: 35529949 PMCID: PMC9073322 DOI: 10.1016/j.xplc.2022.100303] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/15/2021] [Accepted: 01/25/2022] [Indexed: 05/25/2023]
Abstract
The effects of the phytohormone strigolactone (SL) and smoke-derived karrikins (KARs) on plants are generally distinct, despite the fact that they are perceived through very similar mechanisms. The homologous receptors DWARF14 (D14) and KARRIKIN-INSENSITIVE2 (KAI2), together with the F-box protein MORE AXILLARY GROWTH2 (MAX2), mediate SL and KAR responses, respectively, by targeting different SMAX1-LIKE (SMXL) family proteins for degradation. These mechanisms are putatively well-insulated, with D14-MAX2 targeting SMXL6, SMXL7, and SMXL8 and KAI2-MAX2 targeting SMAX1 and SMXL2 in Arabidopsis thaliana. Recent evidence challenges this model. We investigated whether D14 can target SMAX1 and whether this occurs naturally. Genetic analysis indicates that the SL analog GR24 promotes D14-SMAX1 crosstalk. Although D14 shows weaker interactions with SMAX1 than with SMXL2 or SMXL7, D14 mediates GR24-induced degradation of SMAX1 in plants. Osmotic stress triggers SMAX1 degradation, which is protective, through SL biosynthesis and signaling genes. Thus, D14-SMAX1 crosstalk may be beneficial and not simply a vestige of the evolution of the SL pathway.
Collapse
Affiliation(s)
- Qingtian Li
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Elena Sánchez Martín-Fontecha
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología/CSIC, Campus Universidad Autόnoma de Madrid, Madrid, Spain
| | - Aashima Khosla
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Alexandra R.F. White
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Sunhyun Chang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología/CSIC, Campus Universidad Autόnoma de Madrid, Madrid, Spain
| | - David C. Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Wang W, Gao H, Liang Y, Li J, Wang Y. Molecular basis underlying rice tiller angle: Current progress and future perspectives. MOLECULAR PLANT 2022; 15:125-137. [PMID: 34896639 DOI: 10.1016/j.molp.2021.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 05/20/2023]
Abstract
Crop plant architecture is an important agronomic trait that contributes greatly to crop yield. Tiller angle is one of the most critical components that determine crop plant architecture, which in turn substantially affects grain yield mainly owing to its large influence on plant density. Gravity is a fundamental physical force that acts on all organisms on earth. Plant organs sense gravity to control their growth orientation, including tiller angle in rice (Oryza sativa). This review summarizes recent research advances made using rice tiller angle as a research model, providing insights into domestication of rice tiller angle, genetic regulation of rice tiller angle, and shoot gravitropism. Finally, we propose that current discoveries in rice can shed light on shoot gravitropism and improvement of plant tiller/branch angle in other species, thereby contributing to agricultural production in the future.
Collapse
Affiliation(s)
- Wenguang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hengbin Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jiayang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
14
|
Temmerman A, Guillory A, Bonhomme S, Goormachtig S, Struk S. Masks Start to Drop: Suppressor of MAX2 1-Like Proteins Reveal Their Many Faces. FRONTIERS IN PLANT SCIENCE 2022; 13:887232. [PMID: 35645992 PMCID: PMC9133912 DOI: 10.3389/fpls.2022.887232] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 05/11/2023]
Abstract
Although the main players of the strigolactone (SL) signaling pathway have been characterized genetically, how they regulate plant development is still poorly understood. Of central importance are the SUPPRESSOR OF MAX2 1-LIKE (SMXL) proteins that belong to a family of eight members in Arabidopsis thaliana, of which one subclade is involved in SL signaling and another one in the pathway of the chemically related karrikins. Through proteasomal degradation of these SMXLs, triggered by either DWARF14 (D14) or KARRIKIN INSENSITIVE2 (KAI2), several physiological processes are controlled, such as, among others, shoot and root architecture, seed germination, and seedling photomorphogenesis. Yet another clade has been shown to be involved in vascular development, independently of the D14 and KAI2 actions and not relying on proteasomal degradation. Despite their role in several aspects of plant development, the exact molecular mechanisms by which SMXLs regulate them are not completely unraveled. To fill the major knowledge gap in understanding D14 and KAI2 signaling, SMXLs are intensively studied, making it challenging to combine all the insights into a coherent characterization of these important proteins. To this end, this review provides an in-depth exploration of the recent data regarding their physiological function, evolution, structure, and molecular mechanism. In addition, we propose a selection of future perspectives, focusing on the apparent localization of SMXLs in subnuclear speckles, as observed in transient expression assays, which we couple to recent advances in the field of biomolecular condensates and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Arne Temmerman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-Center for Plant Systems Biology, Ghent, Belgium
| | - Ambre Guillory
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Sandrine Bonhomme
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-Center for Plant Systems Biology, Ghent, Belgium
| | - Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-Center for Plant Systems Biology, Ghent, Belgium
- *Correspondence: Sylwia Struk,
| |
Collapse
|
15
|
Zhang M, Lu N, Zhu T, Yang G, Qu G, Shi C, Fei Y, Liu B, Ma W, Wang J. A Bivariate Mapping Model Identifies Major Covariation QTLs for Biomass Allocation Between Leaf and Stem Growth of Catalpa bungei. Front Genet 2021; 12:758209. [PMID: 34868235 PMCID: PMC8637733 DOI: 10.3389/fgene.2021.758209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Biomass allocation plays a critical role in plant morphological formation and phenotypic plasticity, which greatly impact plant adaptability and competitiveness. While empirical studies on plant biomass allocation have focused on molecular biology and ecology approaches, detailed insight into the genetic basis of biomass allocation between leaf and stem growth is still lacking. Herein, we constructed a bivariate mapping model to identify covariation QTLs governing carbon (C) allocation between the leaves and stem as well as the covariation of traits within and between organs in a full-sib mapping population of C. bungei. A total of 123 covQTLs were detected for 23 trait pairs, including six leaf traits (leaf length, width, area, perimeter, length/width ratio and petiole length) and five stem traits (height, diameter at breast height, wood density, stemwood volume and stemwood biomass). The candidate genes were further identified in tissue-specific gene expression data, which provided insights into the genetic architecture underlying C allocation for traits or organs. The key QTLs related to growth and biomass allocation, which included UVH1, CLPT2, GAD/SPL, COG1 and MTERF4, were characterised and verified via gene function annotation and expression profiling. The integration of a bivariate Quantitative trait locus mapping model and gene expression profiling will enable the elucidation of genetic architecture underlying biomass allocation and covariation growth, in turn providing a theoretical basis for forest molecular marker-assisted breeding with specific C allocation strategies for adaptation to heterogeneous environments.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chaozhong Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yue Fei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bingyang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
16
|
Hull R, Choi J, Paszkowski U. Conditioning plants for arbuscular mycorrhizal symbiosis through DWARF14-LIKE signalling. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102071. [PMID: 34186295 PMCID: PMC8425181 DOI: 10.1016/j.pbi.2021.102071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The evolutionarily ancient α/β hydrolase DWARF14-LIKE (D14L) is indispensable for the perception of beneficial arbuscular mycorrhizal (AM) fungi in the rhizosphere, and for a range of developmental processes. Variants of D14L recognise natural strigolactones and the smoke constituent karrikin, both classified as butenolides, and additional unknown ligand(s), critical for symbiosis and development. Recent advances in the understanding of downstream effects of D14L signalling include biochemical evidence for the degradation of the repressor SMAX1. Indeed, genetic removal of rice SMAX1 leads to the de-repression of symbiosis programmes and to the simultaneous increase in strigolactone production. As strigolactones are key to attraction of the fungus in the rhizosphere, the D14L signalling pathway appears to coordinate fungal stimulation and root symbiotic competency. Here, we discuss the possible integrative roles of D14L signalling in conditioning plants for AM symbiosis.
Collapse
Affiliation(s)
- Raphaella Hull
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Jeongmin Choi
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Uta Paszkowski
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Lawrence Weaver Road, Cambridge CB3 0LE, UK.
| |
Collapse
|