1
|
Wang Z, Chu Y, Li Q, Han X, Zhao L, Zhang H, Cai K, Zhang X, Wang X, Qin Y, Fan E. A minimum functional form of the Escherichia coli BAM complex constituted by BamADE assembles outer membrane proteins in vitro. J Biol Chem 2024; 300:107324. [PMID: 38677515 PMCID: PMC11130730 DOI: 10.1016/j.jbc.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The biogenesis of outer membrane proteins is mediated by the β-barrel assembly machinery (BAM), which is a heteropentomeric complex composed of five proteins named BamA-E in Escherichia coli. Despite great progress in the BAM structural analysis, the molecular details of BAM-mediated processes as well as the exact function of each BAM component during OMP assembly are still not fully understood. To enable a distinguishment of the function of each BAM component, it is the aim of the present work to examine and identify the effective minimum form of the E. coli BAM complex by use of a well-defined reconstitution strategy based on a previously developed versatile assay. Our data demonstrate that BamADE is the core BAM component and constitutes a minimum functional form for OMP assembly in E. coli, which can be stimulated by BamB and BamC. While BamB and BamC have a redundant function based on the minimum form, both together seem to cooperate with each other to substitute for the function of the missing BamD or BamE. Moreover, the BamAE470K mutant also requires the function of BamD and BamE to assemble OMPs in vitro, which vice verse suggests that BamADE are the effective minimum functional form of the E. coli BAM complex.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yindi Chu
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qingrong Li
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaochen Han
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Leyi Zhao
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hanqing Zhang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kun Cai
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuyan Zhang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xingyuan Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Youcai Qin
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Enguo Fan
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; School of Medicine, Linyi University, Linyi, China.
| |
Collapse
|
2
|
George A, Patil AG, Mahalakshmi R. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. Protein Sci 2024; 33:e4896. [PMID: 38284489 PMCID: PMC10804688 DOI: 10.1002/pro.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Diderm bacteria employ β-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the β-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM β-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 β-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.
Collapse
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Akanksha Gajanan Patil
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| |
Collapse
|
3
|
Wei L, Wang Z, Chu Y, Cai K, Li W, Huang P, Qin Y, Liu D, Zhuang X, Guo M, Song X, Fan E. Licochalcone A inhibits the assembly function of β-barrel assembly machinery in Escherichia coli. Biochem Biophys Res Commun 2023; 668:90-95. [PMID: 37245294 DOI: 10.1016/j.bbrc.2023.05.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Antimicrobial resistance (AMR) crisis urges the development of new antibiotics. In the present work, we for the first time used bio-affinity ultrafiltration combined with HPLC-MS (UF-HPLC-MS) to examine the interaction between the outer membrane β-barrel proteins and natural products. Our results showed that natural product licochalcone A from licorice interacts with BamA and BamD with the enrichment factor of 6.38 ± 1.46 and 4.80 ± 1.23, respectively. The interaction was further confirmed by use of biacore analysis, which demonstrated that the Kd value between BamA/D and licochalcone was 6.63/28.27 μM, suggesting a good affinity. To examine the effect of licochalcone A on BamA/D function, the developed versatile in vitro reconstitution assay was used and the results showed that 128 μg/mL licochalcone A could reduce the outer membrane protein A integration efficiency to 20%. Although licochalcone A alone can not inhibit the growth of E. coli, but it can affect the membrane permeability, suggesting that licochalcone A holds the potential to be used as a sensitizer to combat AMR.
Collapse
Affiliation(s)
- Liangwan Wei
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Yindi Chu
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Kun Cai
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Wei Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Piying Huang
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Youcai Qin
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Dailin Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Xiaocui Zhuang
- School of Chemical Biology and Environment, Yuxi Normal University, 653100, Yuxi, China
| | - Mingquan Guo
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China.
| | - Xinbo Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China.
| | - Enguo Fan
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China; School of Medicine, Linyi University, 276005, Linyi, China.
| |
Collapse
|
4
|
Noba K, Yoshimoto S, Tanaka Y, Yokoyama T, Matsuura T, Hori K. Simple Method for the Creation of a Bacteria-Sized Unilamellar Liposome with Different Proteins Localized to the Respective Sides of the Membrane. ACS Synth Biol 2023; 12:1437-1446. [PMID: 37155350 DOI: 10.1021/acssynbio.2c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Artificial cells are membrane vesicles mimicking cellular functions. To date, giant unilamellar vesicles made from a single lipid membrane with a diameter of 10 μm or more have been used to create artificial cells. However, the creation of artificial cells that mimic the membrane structure and size of bacteria has been limited due to technical restrictions of conventional liposome preparation methods. Here, we created bacteria-sized large unilamellar vesicles (LUVs) with proteins localized asymmetrically to the lipid bilayer. Liposomes containing benzylguanine-modified phospholipids were prepared by combining the conventional water-in-oil emulsion method and the extruder method, and green fluorescent protein fused with SNAP-tag was localized to the inner leaflet of the lipid bilayer. Biotinylated lipid molecules were then inserted externally, and the outer leaflet was modified with streptavidin. The resulting liposomes had a size distribution in the range of 500-2000 nm with a peak at 841 nm (the coefficient of variation was 10.3%), which was similar to that of spherical bacterial cells. Fluorescence microscopy, quantitative evaluation using flow cytometry, and western blotting proved the intended localization of different proteins on the lipid membrane. Cryogenic electron microscopy and quantitative evaluation by α-hemolysin insertion revealed that most of the created liposomes were unilamellar. Our simple method for the preparation of bacteria-sized LUVs with asymmetrically localized proteins will contribute to the creation of artificial bacterial cells for investigating functions and the significance of their surface structure and size.
Collapse
Affiliation(s)
- Kosaku Noba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Takeshi Yokoyama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1-i7E-307, Meguro-Ku, Tokyo 152-8550, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|