1
|
Jain S, Voulgaris D, Thongkorn S, Hesen R, Hägg A, Moslem M, Falk A, Herland A. On-Chip Neural Induction Boosts Neural Stem Cell Commitment: Toward a Pipeline for iPSC-Based Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401859. [PMID: 38655836 PMCID: PMC11220685 DOI: 10.1002/advs.202401859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 04/26/2024]
Abstract
The clinical translation of induced pluripotent stem cells (iPSCs) holds great potential for personalized therapeutics. However, one of the main obstacles is that the current workflow to generate iPSCs is expensive, time-consuming, and requires standardization. A simplified and cost-effective microfluidic approach is presented for reprogramming fibroblasts into iPSCs and their subsequent differentiation into neural stem cells (NSCs). This method exploits microphysiological technology, providing a 100-fold reduction in reagents for reprogramming and a ninefold reduction in number of input cells. The iPSCs generated from microfluidic reprogramming of fibroblasts show upregulation of pluripotency markers and downregulation of fibroblast markers, on par with those reprogrammed in standard well-conditions. The NSCs differentiated in microfluidic chips show upregulation of neuroectodermal markers (ZIC1, PAX6, SOX1), highlighting their propensity for nervous system development. Cells obtained on conventional well plates and microfluidic chips are compared for reprogramming and neural induction by bulk RNA sequencing. Pathway enrichment analysis of NSCs from chip showed neural stem cell development enrichment and boosted commitment to neural stem cell lineage in initial phases of neural induction, attributed to a confined environment in a microfluidic chip. This method provides a cost-effective pipeline to reprogram and differentiate iPSCs for therapeutics compliant with current good manufacturing practices.
Collapse
Affiliation(s)
- Saumey Jain
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
- Division of NanobiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
| | - Dimitrios Voulgaris
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
- Division of NanobiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMESCenter for Integrated Medical and Engineering ScienceDepartment of NeuroscienceKarolinska InstitutetSolna171 65Sweden
| | - Surangrat Thongkorn
- Division of NanobiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE)Department of Clinical ChemistryFaculty of Allied Health SciencesChulalongkorn UniversityBangkok10330Thailand
| | - Rick Hesen
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
| | - Alice Hägg
- Neural Stem CellsDepartment of Experimental Medical ScienceLund Stem Cell CenterLund UniversityLund221 84Sweden
| | - Mohsen Moslem
- Department of NeuroscienceKarolinska InstitutetSolna171 65Sweden
| | - Anna Falk
- Neural Stem CellsDepartment of Experimental Medical ScienceLund Stem Cell CenterLund UniversityLund221 84Sweden
- Department of NeuroscienceKarolinska InstitutetSolna171 65Sweden
| | - Anna Herland
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
- Division of NanobiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMESCenter for Integrated Medical and Engineering ScienceDepartment of NeuroscienceKarolinska InstitutetSolna171 65Sweden
- Department of NeuroscienceKarolinska InstitutetSolna171 65Sweden
| |
Collapse
|
2
|
Qabrati X, Kim I, Ghosh A, Bundschuh N, Noé F, Palmer AS, Bar-Nur O. Transgene-free direct conversion of murine fibroblasts into functional muscle stem cells. NPJ Regen Med 2023; 8:43. [PMID: 37553383 PMCID: PMC10409758 DOI: 10.1038/s41536-023-00317-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Transcription factor-based cellular reprogramming provides an attractive approach to produce desired cell types for regenerative medicine purposes. Such cellular conversions are widely dependent on viral vectors to efficiently deliver and express defined factors in target cells. However, use of viral vectors is associated with unfavorable genomic integrations that can trigger deleterious molecular consequences, rendering this method a potential impediment to clinical applications. Here, we report on a highly efficient transgene-free approach to directly convert mouse fibroblasts into induced myogenic progenitor cells (iMPCs) by overexpression of synthetic MyoD-mRNA in concert with an enhanced small molecule cocktail. First, we performed a candidate compound screen and identified two molecules that enhance fibroblast reprogramming into iMPCs by suppression of the JNK and JAK/STAT pathways. Simultaneously, we developed an optimal transfection protocol to transiently overexpress synthetic MyoD-mRNA in fibroblasts. Combining these two techniques enabled robust and rapid reprogramming of fibroblasts into Pax7 positive iMPCs in as little as 10 days. Nascent transgene-free iMPCs proliferated extensively in vitro, expressed a suite of myogenic stem cell markers, and could differentiate into highly multinucleated and contractile myotubes. Furthermore, using global and single-cell transcriptome assays, we delineated gene expression changes associated with JNK and JAK/STAT pathway inhibition during reprogramming, and identified in iMPCs a Pax7+ stem cell subpopulation resembling satellite cells. Last, transgene-free iMPCs robustly engrafted skeletal muscles of a Duchenne muscular dystrophy mouse model, restoring dystrophin expression in hundreds of myofibers. In summary, this study reports on an improved and clinically safer approach to convert fibroblasts into myogenic stem cells that can efficiently contribute to muscle regeneration in vivo.
Collapse
Affiliation(s)
- Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Inseon Kim
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Falko Noé
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Andrew S Palmer
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
3
|
Dufva M. A quantitative meta-analysis comparing cell models in perfused organ on a chip with static cell cultures. Sci Rep 2023; 13:8233. [PMID: 37217582 DOI: 10.1038/s41598-023-35043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
As many consider organ on a chip for better in vitro models, it is timely to extract quantitative data from the literature to compare responses of cells under flow in chips to corresponding static incubations. Of 2828 screened articles, 464 articles described flow for cell culture and 146 contained correct controls and quantified data. Analysis of 1718 ratios between biomarkers measured in cells under flow and static cultures showed that the in all cell types, many biomarkers were unregulated by flow and only some specific biomarkers responded strongly to flow. Biomarkers in cells from the blood vessels walls, the intestine, tumours, pancreatic island, and the liver reacted most strongly to flow. Only 26 biomarkers were analysed in at least two different articles for a given cell type. Of these, the CYP3A4 activity in CaCo2 cells and PXR mRNA levels in hepatocytes were induced more than two-fold by flow. Furthermore, the reproducibility between articles was low as 52 of 95 articles did not show the same response to flow for a given biomarker. Flow showed overall very little improvements in 2D cultures but a slight improvement in 3D cultures suggesting that high density cell culture may benefit from flow. In conclusion, the gains of perfusion are relatively modest, larger gains are linked to specific biomarkers in certain cell types.
Collapse
Affiliation(s)
- Martin Dufva
- Department of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
4
|
Ostrovidov S, Ramalingam M, Bae H, Orive G, Fujie T, Shi X, Kaji H. Latest developments in engineered skeletal muscle tissues for drug discovery and development. Expert Opin Drug Discov 2023; 18:47-63. [PMID: 36535280 DOI: 10.1080/17460441.2023.2160438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION With the advances in skeletal muscle tissue engineering, new platforms have arisen with important applications in biology studies, disease modeling, and drug testing. Current developments highlight the quest for engineering skeletal muscle tissues with higher complexity . These new human skeletal muscle tissue models will be powerful tools for drug discovery and development and disease modeling. AREAS COVERED The authors review the latest advances in in vitro models of engineered skeletal muscle tissues used for testing drugs with a focus on the use of four main cell culture techniques: Cell cultures in well plates, in microfluidics, in organoids, and in bioprinted constructs. Additional information is provided on the satellite cell niche. EXPERT OPINION In recent years, more sophisticated in vitro models of skeletal muscle tissues have been fabricated. Important developments have been made in stem cell research and in the engineering of human skeletal muscle tissue. Some platforms have already started to be used for drug testing, notably those based on the parameters of hypertrophy/atrophy and the contractibility of myotubes. More developments are expected through the use of multicellular types and multi-materials as matrices . The validation and use of these models in drug testing should now increase.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, Republic of Korea.,School of Basic Medical Science, Chengdu University, Chengdu, Sichuan, China.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea.,Department of Metallurgical and Materials Engineering, Atilim University, Ankara, Turkey
| | - Hojae Bae
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Biomedical Research Networking Centre in Bioengineering, Vitoria-Gasteiz, Spain
| | - Toshinori Fujie
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
5
|
Contato A, Gagliano O, Magnussen M, Giomo M, Elvassore N. Timely delivery of cardiac mmRNAs in microfluidics enhances cardiogenic programming of human pluripotent stem cells. Front Bioeng Biotechnol 2022; 10:871867. [PMID: 36032711 PMCID: PMC9399928 DOI: 10.3389/fbioe.2022.871867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
In the last two decades lab-on-chip models, specifically heart-on-chip, have been developed as promising technologies for recapitulating physiological environments suitable for studies of drug and environmental effects on either human physiological or patho-physiological conditions. Most human heart-on-chip systems are based on integration and adaptation of terminally differentiated cells within microfluidic context. This process requires prolonged procedures, multiple steps, and is associated with an intrinsic variability of cardiac differentiation. In this view, we developed a method for cardiac differentiation-on-a-chip based on combining the stage-specific regulation of Wnt/β-catenin signaling with the forced expression of transcription factors (TFs) that timely recapitulate hallmarks of the cardiac development. We performed the overall cardiac differentiation from human pluripotent stem cells (hPSCs) to cardiomyocytes (CMs) within a microfluidic environment. Sequential forced expression of cardiac TFs was achieved by a sequential mmRNAs delivery of first MESP1, GATA4 followed by GATA4, NKX2.5, MEF2C, TBX3, and TBX5. We showed that this optimized protocol led to a robust and reproducible approach to obtain a cost-effective hiPSC-derived heart-on-chip. The results showed higher distribution of cTNT positive CMs along the channel and a higher expression of functional cardiac markers (TNNT2 and MYH7). The combination of stage-specific regulation of Wnt/β-catenin signaling with mmRNAs encoding cardiac transcription factors will be suitable to obtain heart-on-chip model in a cost-effective manner, enabling to perform combinatorial, multiparametric, parallelized and high-throughput experiments on functional cardiomyocytes.
Collapse
Affiliation(s)
- Anna Contato
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Onelia Gagliano
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Michael Magnussen
- GOSICH Zayed Centre for Research Into Rare Disease in Children, University College London, London, United Kingdom
| | - Monica Giomo
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- GOSICH Zayed Centre for Research Into Rare Disease in Children, University College London, London, United Kingdom
- *Correspondence: Nicola Elvassore,
| |
Collapse
|
6
|
Luni C, Gagliano O, Elvassore N. Derivation and Differentiation of Human Pluripotent Stem Cells in Microfluidic Devices. Annu Rev Biomed Eng 2022; 24:231-248. [PMID: 35378044 DOI: 10.1146/annurev-bioeng-092021-042744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An integrative approach based on microfluidic design and stem cell biology enables capture of the spatial-temporal environmental evolution underpinning epigenetic remodeling and the morphogenetic process. We examine the body of literature that encompasses microfluidic applications where human induced pluripotent stem cells are derived starting from human somatic cells and where human pluripotent stem cells are differentiated into different cell types. We focus on recent studies where the intrinsic features of microfluidics have been exploited to control the reprogramming and differentiation trajectory at the microscale, including the capability of manipulating the fluid velocity field, mass transport regime, and controllable composition within micro- to nanoliter volumes in space and time. We also discuss studies of emerging microfluidic technologies and applications. Finally, we critically discuss perspectives and challenges in the field and how these could be instrumental for bringing about significant biological advances in the field of stem cell engineering. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Camilla Luni
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy;
| | - Onelia Gagliano
- Department of Industrial Engineering, University of Padova, Padova, Italy; , .,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy; , .,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.,Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|