1
|
Pandey J, Larson-Casey JL, Patil MH, He C, Pinthong N, Carter AB. The PERK/ATF4 pathway is required for metabolic reprogramming and progressive lung fibrosis. JCI Insight 2025; 10:e189330. [PMID: 40208691 DOI: 10.1172/jci.insight.189330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/04/2025] [Indexed: 04/11/2025] Open
Abstract
Asbestosis is a prototypical type of fibrosis that is progressive and does not resolve. ER stress is increased in multiple cell types that contribute to fibrosis; however, the mechanism(s) by which ER stress in lung macrophages contributes to fibrosis is poorly understood. Here, we show that ER stress resulted in protein kinase RNA-like ER kinase (PERK; Eif2ak3) activation in humans with asbestosis. Similar results were seen in asbestos-injured mice. Mice harboring a conditional deletion of Eif2ak3 were protected from fibrosis. Lung macrophages from asbestosis individuals had evidence of metabolic reprogramming to fatty acid oxidation (FAO). Eif2ak3fl/fl mice had increased oxygen consumption rate (OCR), whereas OCR in Eif2ak3-/- Lyz2-cre mice was reduced to control levels. PERK increased activating transcription factor 4 (Atf4) expression, and ATF4 bound to the Ppargc1a promoter to increase its expression. GSK2656157, a PERK-specific inhibitor, reduced FAO, Ppargc1a, and Aft4 in lung macrophages and reversed established fibrosis in mice. These observations suggest that PERK is a therapeutic target to reverse established fibrosis.
Collapse
Affiliation(s)
- Jyotsana Pandey
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Mallikarjun H Patil
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chao He
- Baylor College of Medicine, Houston, Texas, USA
| | - Nisarat Pinthong
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Byun JH, Lebeau PF, Trink J, Uppal N, Lanktree MB, Krepinsky JC, Austin RC. Endoplasmic reticulum stress as a driver and therapeutic target for kidney disease. Nat Rev Nephrol 2025; 21:299-313. [PMID: 39988577 DOI: 10.1038/s41581-025-00938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
The endoplasmic reticulum (ER) has crucial roles in metabolically active cells, including protein translation, protein folding and quality control, lipid biosynthesis, and calcium homeostasis. Adverse metabolic conditions or pathogenic genetic variants that cause misfolding and accumulation of proteins within the ER of kidney cells initiate an injurious process known as ER stress that contributes to kidney disease and its cardiovascular complications. Initiation of ER stress activates the unfolded protein response (UPR), a cellular defence mechanism that functions to restore ER homeostasis. However, severe or chronic ER stress rewires the UPR to activate deleterious pathways that exacerbate inflammation, apoptosis and fibrosis, resulting in kidney injury. This insidious crosstalk between ER stress, UPR activation, oxidative stress and inflammation forms a vicious cycle that drives kidney disease and vascular damage. Furthermore, genetic variants that disrupt protein-folding mechanisms trigger ER stress, as evidenced in autosomal-dominant tubulointerstitial kidney disease and Fabry disease. Emerging therapeutic strategies that enhance protein-folding capacity and reduce the burden of ER stress have shown promising results in kidney diseases. Thus, integrating knowledge of how genetic variants cause protein misfolding and ER stress into clinical practice will enhance treatment strategies and potentially improve outcomes for various kidney diseases and their vascular complications.
Collapse
Affiliation(s)
- Jae Hyun Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Paul F Lebeau
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Jackie Trink
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Nikhil Uppal
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Matthew B Lanktree
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Wang S, Ren Y, Duan A, Lu D, Liu G, Meng L, Zhang Y, Shou R, Li H, Wang Z, Wang Z, Sun X. Unravelling the impact of QRICH1 modulation on endoplasmic reticulum stress and neuronal apoptosis in traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167621. [PMID: 39662754 DOI: 10.1016/j.bbadis.2024.167621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major public health concern with high morbidity and mortality rates. Secondary brain injury, marked by inflammatory responses and apoptosis, worsens TBI outcomes. The endoplasmic reticulum stress (ERS) response has been implicated in secondary brain injury, with Glutamine Rich 1 Gene (QRICH1) emerging as a potential mediator. However, the precise role of QRICH1 in TBI pathogenesis and its therapeutic implications remain unclear. METHODS Controlled cortical impact mouse and Lipopolysaccharide-stimulated primary neuron models were used. Behavioral assessments, including the modified Garcia score, Y-maze test, and open-field test, were used to evaluate postoperative recovery in mice. QRICH1 neuron conditional knockout (cKO) mice were used to assess QRICH1 function, whereas adeno-associated virus (AAV)-mediated gene manipulation was used to modulate QRICH1 expression in cortical neurons. RESULTS QRICH1 expression was upregulated in the brain tissue of TBI mice, particularly 24 h post-injury, as shown by western blot analysis and immunofluorescence staining. QRICH1 is localized within neuronal nuclei, suggesting a role in cellular stress responses. QRICH1 cKO improved behavioral outcomes post-TBI, whereas AAV-mediated QRICH1 overexpression exacerbated secondary brain injury, characterized by increased ERS-related protein expression and neuronal death. Conversely, AAV-mediated QRICH1 knockdown reduced secondary brain injury as evidenced by decreased ERS-related protein expression and neuronal death. CONCLUSION QRICH1 plays a critical role in exacerbating ERS and apoptosis, and influences neuronal fate in secondary brain injury. Its involvement in the ERS pathway and in the induction of neuronal apoptosis post-TBI highlights QRICH1 as a potential therapeutic target for TBI treatment.
Collapse
Affiliation(s)
- Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China; Department of Neurosurgery, Fuyang People's Hospital, Fuyang Clinical College of Anhui Medical University, Fuyang, Anhui 236006, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Lei Meng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Yu Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Renjie Shou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
4
|
He M, Wang T, Tang C, Xiao M, Pu X, Qi J, Li Y, Li X. Metabolomics and Transcriptomics Reveal the Effects of Different Fermentation Times on Antioxidant Activities of Ophiocordyceps sinensis. J Fungi (Basel) 2025; 11:51. [PMID: 39852470 PMCID: PMC11766798 DOI: 10.3390/jof11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Ophiocordyceps sinensis is a fungus that is cultured through fermentation from wild Chinese cordyceps. While studies have examined its metabolites, the evaluation of its antioxidant capacity remains to be conducted. The antioxidant results of O. sinensis indicate that the ferric ion-reducing antioxidant power (FRAP), antioxidant capacity (2.74 ± 0.12 μmol Trolox/g), 2,2-diphenyl-1-picrylhydrazyl (DPPH•) free radical scavenging rate (60.21 ± 0.51%), and the hydroxyl free radical scavenging rate (91.83 ± 0.68%) reached a maximum on day 30. Using LC-MS/MS to measure the metabolites on D24, D30, and D36, we found that the majority of the differential accumulated metabolites (DAMs) primarily accumulate in lipids, organoheterocyclic compounds, and organic acids and their derivatives. Notably, the DAMs exhibiting high peaks include acetylcarnitine, glutathione, linoleic acid, and L-propionylcarnitine, among others. The transcriptome analysis results indicate that the differentially expressed genes (DEGs) exhibiting high expression peaks on D30 primarily included lnaA, af470, and ZEB1; high expression peaks on D24 comprised SPBC29A3.09c and YBT1; high expression peaks on D36 included dtxS1, PA1538, and katG. The combined analysis revealed significant and extremely significant positive and negative correlations between all the DAMs and DEGs. The primary enriched pathways (p < 0.05) included glutathione metabolism, tryptophan metabolism, carbon metabolism, biosynthesis of secondary metabolites, and phenylalanine metabolism. The metabolic pathway map revealed that the DAMs and DEGs influencing the antioxidant activity of O. sinensis were significantly up-regulated on D30 but down-regulated on D36. The correlation analysis suggests that an increase in the content of DEGs and DAMs promotes an increase in the levels of enzyme and non-enzyme substances, ultimately enhancing the antioxidant capacity of O. sinensis. These findings serve as a reference of how DAMs and DEGs affect the antioxidant activity of O. sinensis. This may contribute to the enhanced development and application of O. sinensis.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Xiaojian Pu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Jianzhao Qi
- Center of Edible Fungi, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| |
Collapse
|
5
|
Xiao M, Wang T, Tang C, He M, Li Y, Li X. Effects of Different Drying Methods on Amino Acid Metabolite Content and Quality of Ophiocordyceps sinensis by LC-MS/MS Combined with Multivariate Statistical Methods. Metabolites 2024; 14:459. [PMID: 39195555 DOI: 10.3390/metabo14080459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Ophiocordyceps sinensis, a medicinal fungus utilized in traditional Chinese medicine, exhibits a range of biological activities and pharmacological functions. In this study, we determined the amino acid composition of 94 amino acids in Ophiocordyceps sinensis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fresh samples of Ophiocordyceps sinensis were analyzed under three different drying methods: vacuum freeze drying (DG), oven drying (HG), and air drying (YG). This investigation aims to assess the effects of these drying methods on the content and quality of amino acid metabolites in Ophiocordyceps sinensis. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed for sample classification and the identification of differentially accumulated metabolites (DAMs). The results revealed the detection of 79 amino acid metabolites, which included elevated levels of oxidized L-glutamic acid, L-glutamic acid, and glutathione. Differential amino acid metabolites that met the criteria of fold change (|FC|) ≥ 2, p-value (p) ≤ 0.5, and variable importance in projection (VIP) ≥ 1 were analyzed. Significant differences in 48 amino acid metabolites between the groups were primarily related to protein synthesis. According to the KEGG analysis, all three comparison samples exhibited significant enrichment in several pathways. These pathways included the interaction of neuroactive ligands with receptors, the metabolism of cysteine and methionine, and the biosynthesis of plant hormones. The variations in amino acid metabolite levels observed across the three drying methods may be attributed to the degradation of proteins or amino acid metabolites, influenced by several factors, including temperature, enzyme activity, and moisture content. Additionally, Maillard and oxidative reactions involving substances such as amino acids, sugars, and oxygen may also play a significant role. This study demonstrates that various drying methods significantly influence the amino acid metabolite content of Ophiocordyceps sinensis. Therefore, the selection of drying methods should be tailored to meet specific requirements. This research provides important insights into the metabolite composition of Ophiocordyceps sinensis under different drying techniques, thereby contributing to a more comprehensive understanding of its nutritional and therapeutic properties.
Collapse
Affiliation(s)
- Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| |
Collapse
|
6
|
Márquez-Nogueras KM, Vuchkovska V, Kuo IY. Calcium signaling in polycystic kidney disease- cell death and survival. Cell Calcium 2023; 112:102733. [PMID: 37023534 PMCID: PMC10348384 DOI: 10.1016/j.ceca.2023.102733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Polycystic kidney disease is typified by cysts in the kidney and extra-renal manifestations including hypertension and heart failure. The main genetic underpinning this disease are loss-of function mutations to the two polycystin proteins, polycystin 1 and polycystin 2. Molecularly, the disease is characterized by changes in multiple signaling pathways including down regulation of calcium signaling, which, in part, is contributed by the calcium permeant properties of polycystin 2. These signaling pathways enable the cystic cells to survive and avoid cell death. This review focuses on the studies that have emerged in the past 5 years describing how the structural insights gained from PC-1 and PC-2 inform the calcium dependent molecular pathways of autophagy and the unfolded protein response that are regulated by the polycystin proteins and how it leads to cell survival and/or cell death.
Collapse
Affiliation(s)
- Karla M Márquez-Nogueras
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA
| | - Virdjinija Vuchkovska
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA; Graduate School, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA.
| |
Collapse
|
7
|
Morleo M, Pezzella N, Franco B. Proteome balance in ciliopathies: the OFD1 protein example. Trends Mol Med 2023; 29:201-217. [PMID: 36494254 DOI: 10.1016/j.molmed.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
The balance of protein synthesis and degradation is finely regulated and influences cellular homeostasis and biological processes (e.g., embryonic development and neuronal plasticity). Recent data demonstrated that centrosomal/ciliary proteins enable proteome control in response to spatial or microenvironmental stimuli. Here, we discuss recent discoveries regarding the role in the balance of the proteome of centrosomal/ciliary proteins associated with genetic disorders known as ciliopathies. In particular, OFD1 was the first example of a ciliopathy protein controlling both protein expression and autophagic/proteasomal degradation. Understanding the role of proteome balance in the pathogenesis of the clinical manifestations of ciliopathies may pave the way to the identification of a wide range of putative novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples 'Federico II', Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
8
|
Panda DK, Bai X, Zhang Y, Stylianesis NA, Koromilas AE, Lipman ML, Karaplis AC. SCF-SKP2 E3 ubiquitin ligase links mTORC1/ER stress/ISR with YAP activation in murine renal cystogenesis. J Clin Invest 2022; 132:153943. [PMID: 36326820 PMCID: PMC9754004 DOI: 10.1172/jci153943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The Hippo pathway nuclear effector Yes-associated protein (YAP) potentiates the progression of polycystic kidney disease (PKD) arising from ciliopathies. The mechanisms underlying the increase in YAP expression and transcriptional activity in PKD remain obscure. We observed that in kidneys from mice with juvenile cystic kidney (jck) ciliopathy, the aberrant hyperactivity of mechanistic target of rapamycin complex 1 (mTORC1), driven by ERK1/2 and PI3K/AKT cascades, induced ER proteotoxic stress. To reduce this stress by reprogramming translation, the protein kinase R-like ER kinase-eukaryotic initiation factor 2α (PERK/eIF2α) arm of the integrated stress response (ISR) was activated. PERK-mediated phosphorylation of eIF2α drove the selective translation of activating transcription factor 4 (ATF4), potentiating YAP expression. In parallel, YAP underwent K63-linked polyubiquitination by SCF S-phase kinase-associated protein 2 (SKP2) E3 ubiquitin ligase, a Hippo-independent, nonproteolytic ubiquitination that enhances YAP nuclear trafficking and transcriptional activity in cancer cells. Defective ISR cellular adaptation to ER stress in eIF2α phosphorylation-deficient jck mice further augmented YAP-mediated transcriptional activity and renal cyst growth. Conversely, pharmacological tuning down of ER stress/ISR activity and SKP2 expression in jck mice by administration of tauroursodeoxycholic acid (TUDCA) or tolvaptan impeded these processes. Restoring ER homeostasis and/or interfering with the SKP2-YAP interaction represent potential therapeutic avenues for stemming the progression of renal cystogenesis.
Collapse
Affiliation(s)
- Dibyendu K. Panda
- Division of Endocrinology and Metabolism, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital,,Division of Nephrology, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| | - Xiuying Bai
- Division of Endocrinology and Metabolism, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| | - Yan Zhang
- Division of Nephrology, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| | | | - Antonis E. Koromilas
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Mark L. Lipman
- Division of Nephrology, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| | - Andrew C. Karaplis
- Division of Endocrinology and Metabolism, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| |
Collapse
|
9
|
Liu X, Tang J, Chen XZ. Role of PKD2 in the endoplasmic reticulum calcium homeostasis. Front Physiol 2022; 13:962571. [PMID: 36035467 PMCID: PMC9399649 DOI: 10.3389/fphys.2022.962571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 or PKD2 gene which encodes membrane receptor PKD1 and cation channel PKD2, respectively. PKD2, also called transient receptor potential polycystin-2 (TRPP2), is a Ca2+-permeable channel located on the membrane of cell surface, primary cilia, and endoplasmic reticulum (ER). Ca2+ is closely associated with diverse cellular functions. While ER Ca2+ homeostasis depends on different Ca2+ receptors, channels and transporters, the role of PKD2 within the ER remains controversial. Whether and how PKD2-mediated ER Ca2+ leak relates to ADPKD pathogenesis is not well understood. Here, we reviewed current knowledge about the biophysical and physiological properties of PKD2 and how PKD2 contributes to ER Ca2+ homeostasis.
Collapse
Affiliation(s)
- Xiong Liu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, HB, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Xing-Zhen Chen,
| |
Collapse
|