1
|
Virgilio MC, Ramnani B, Chen T, Disbennett WM, Lubow J, Welch JD, Collins KL. HIV-1 Vpr combats the PU.1-driven antiviral response in primary human macrophages. Nat Commun 2024; 15:5514. [PMID: 38951492 PMCID: PMC11217462 DOI: 10.1038/s41467-024-49635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
HIV-1 Vpr promotes efficient spread of HIV-1 from macrophages to T cells by transcriptionally downmodulating restriction factors that target HIV-1 Envelope protein (Env). Here we find that Vpr induces broad transcriptomic changes by targeting PU.1, a transcription factor necessary for expression of host innate immune response genes, including those that target Env. Consistent with this, we find silencing PU.1 in infected macrophages lacking Vpr rescues Env. Vpr downmodulates PU.1 through a proteasomal degradation pathway that depends on physical interactions with PU.1 and DCAF1, a component of the Cul4A E3 ubiquitin ligase. The capacity for Vpr to target PU.1 is highly conserved across primate lentiviruses. In addition to impacting infected cells, we find that Vpr suppresses expression of innate immune response genes in uninfected bystander cells, and that virion-associated Vpr can degrade PU.1. Together, we demonstrate Vpr counteracts PU.1 in macrophages to blunt antiviral immune responses and promote viral spread.
Collapse
Affiliation(s)
- Maria C Virgilio
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Barkha Ramnani
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - W Miguel Disbennett
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Post-Baccalaureate Research Education Program (PREP), University of Michigan, Ann Arbor, MI, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Lubow
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- ImmunoVec, Inc., Los Angeles, CA, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, USA
| | - Kathleen L Collins
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Cui C, Hao P, Jin C, Xu W, Liu Y, Li L, Du S, Shang L, Jin X, Jin N, Wang J, Li C. Interaction of Nipah Virus F and G with the Cellular Protein Cortactin Discovered by a Proximity Interactome Assay. Int J Mol Sci 2024; 25:4112. [PMID: 38612921 PMCID: PMC11012870 DOI: 10.3390/ijms25074112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic virus with a potential large-scale outbreak, which poses a great threat to world health and security. In order to explore more potential factors associated with NiV, a proximity labeling method was applied to investigate the F, G, and host protein interactions systematically. We screened 1996 and 1524 high-confidence host proteins that interacted with the NiV fusion (F) glycoprotein and attachment (G) glycoprotein in HEK293T cells by proximity labeling technology, and 863 of them interacted with both F and G. The results of GO and KEGG enrichment analysis showed that most of these host proteins were involved in cellular processes, molecular binding, endocytosis, tight junction, and other functions. Cytoscape software (v3.9.1) was used for visual analysis, and the results showed that Cortactin (CTTN), Serpine mRNA binding protein 1 (SERBP1), and stathmin 1 (STMN1) were the top 20 proteins and interacted with F and G, and were selected for further validation. We observed colocalization of F-CTTN, F-SERBP1, F-STMN1, G-CTTN, G-SERBP1, and G-STMN1 using confocal fluorescence microscopy, and the results showed that CTTN, SERBP1, and STMN1 overlapped with NiV F and NiV G in HEK293T cells. Further studies found that CTTN can significantly inhibit the infection of the Nipah pseudovirus (NiVpv) into host cells, while SERBP1 and STMN1 had no significant effect on pseudovirus infection. In addition, CTTN can also inhibit the infection of the Hendra pseudovirus (HeVpv) in 293T cells. In summary, this study revealed that the potential host proteins interacted with NiV F and G and demonstrated that CTTN could inhibit NiVpv and HeVpv infection, providing new evidence and targets for the study of drugs against these diseases.
Collapse
Affiliation(s)
- Chunmei Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
- Preventive Veterinary Medicine Laboratory of Agricultural College, Yanbian University, Yanji 133000, China;
| | - Pengfei Hao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
| | - Chaozhi Jin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (C.J.); (Y.L.); (L.S.)
| | - Wang Xu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
| | - Yuchen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (C.J.); (Y.L.); (L.S.)
| | - Letian Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
| | - Shouwen Du
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
| | - Limin Shang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (C.J.); (Y.L.); (L.S.)
| | - Xin Jin
- Preventive Veterinary Medicine Laboratory of Agricultural College, Yanbian University, Yanji 133000, China;
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (C.J.); (Y.L.); (L.S.)
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
| |
Collapse
|
3
|
Taga K, Takeuchi H. Novel role of host protein SLC25A42 in the HIV-1 reactivation of latent HIV-1 provirus. Microbiol Immunol 2024; 68:90-99. [PMID: 38244193 DOI: 10.1111/1348-0421.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024]
Abstract
Despite the effectiveness of combination antiretroviral therapy, human immunodeficiency virus (HIV) infection remains incurable. To seek new strategies to overcome HIV type 1 (HIV-1) latency, one of the major barriers to HIV elimination, it is crucial to better understand how this state is maintained. Here, by means of an RNA interference screen employing an HIV-1 latency model using monocytic cell lines, we identified solute carrier family 25 member 42 (SLC25A42) as a potential host factor not previously known to affect HIV-1 latency. SLC25A42 knockdown resulted in increased HIV-1 expression, whereas forced expression of exogenous SLC25A42 suppressed it in SLC25A42-depleted cells. SLC25A42 depletion increased HIV-1 proviral transcriptional elongation but did not cause HIV-1 activation in an HIV-1 Tat-depleted latency model. This suggests that the role of SLC25A42 in HIV-1 transcription depends on HIV-1 Tat. Chromatin immunoprecipitation-qPCR analysis further revealed that SLC25A42 accumulated on or near the HIV-1 5' long terminal repeat promoter region of the HIV-1 provirus, suggesting a possible role in regulating HIV-1 Tat near this promoter region. These results indicate that SLC25A42 plays a novel role in HIV-1 latency maintenance in monocytic HIV-1 reservoirs.
Collapse
Affiliation(s)
- Kei Taga
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroaki Takeuchi
- Department of High-risk Infectious Disease Control, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- TMDU Center for Infectious Disease Education and Analysis (TCIDEA), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
4
|
Virgilio MC, Ramnani B, Chen T, Disbennett WM, Lubow J, Welch JD, Collins KL. HIV-1 Vpr combats the PU.1-driven antiviral response in primary human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.21.533528. [PMID: 36993393 PMCID: PMC10055223 DOI: 10.1101/2023.03.21.533528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
HIV-1 Vpr promotes efficient spread of HIV-1 from macrophages to T cells by transcriptionally downmodulating restriction factors that target HIV-1 Envelope protein (Env). Here we find that Vpr induces broad transcriptomic changes by targeting PU.1, a transcription factor necessary for expression of host innate immune response genes, including those that target Env. Consistent with this, we find silencing PU.1 in infected macrophages lacking Vpr rescues Env. Vpr downmodulates PU.1 through a proteasomal degradation pathway that depends on physical interactions with PU.1 and DCAF1, a component of the Cul4A E3 ubiquitin ligase. The capacity for Vpr to target PU.1 is highly conserved across primate lentiviruses. In addition to impacting infected cells, we find that Vpr suppresses expression of innate immune response genes in uninfected bystander cells, and that virion-associated Vpr can degrade PU.1. Together, we demonstrate Vpr counteracts PU.1 in macrophages to blunt antiviral immune responses and promote viral spread.
Collapse
|
5
|
Kitamura H, Sukegawa S, Matsuda K, Tanimoto K, Kobayakawa T, Takahashi K, Tamamura H, Tsuchiya K, Gatanaga H, Maeda K, Takeuchi H. 4-phenylquinoline-8-amine induces HIV-1 reactivation and apoptosis in latently HIV-1 infected cells. Biochem Biophys Res Commun 2023; 641:139-147. [PMID: 36527748 DOI: 10.1016/j.bbrc.2022.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Combinational antiretroviral therapy (cART) dramatically suppresses the viral load to undetectable levels in human immunodeficiency virus (HIV)-infected patients. However, HIV-1 reservoirs in CD4+T cells and myeloid cells, which can evade cART and host antiviral immune systems, are still significant obstacles to HIV-1 eradication. The "Shock and Kill" approach using latently-reversing agents (LRAs) is therefore currently developing strategies for effective HIV-1 reactivation from latency and inducing cell death. Here, we performed small-molecular chemical library screening with monocytic HIV-1 latently-infected model cells, THP-1 Nluc #225, and identified 4-phenylquinoline-8-amine (PQA) as a novel LRA candidate. PQA induced efficient HIV-1 reactivation in combination with PKC agonists including Prostratin and showed a similar tendency for HIV-1 activation in primary HIV-1 reservoirs. Furthermore, PQA induced killing of HIV-1 latently-infected cells. RNA-sequencing analysis revealed PQA had different functional mechanisms from PKC agonists, and oxidative stress-inducible genes including DDIT3 or CTSD were only involved in PQA-mediated cell death. In summary, PQA is a potential LRA lead compound that exerts novel functions related to HIV-1 activation and apoptosis-mediated cell death to eliminate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Haruki Kitamura
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Sukegawa
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan; Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouki Matsuda
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan; Japan Foundation for AIDS Prevention, Tokyo, Japan
| | - Kousuke Tanimoto
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuho Takahashi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan.
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan; Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|