1
|
Alotaibi F, Aba Alkhayl FF, Foudah AI, Azhar Kamal M, Moglad EH, Khan S, Rehman ZU, Warsi MK, Jawaid T, Alam A. Investigating the effects of four medicinal plants against dengue virus through QSAR modeling and molecular dynamics studies. J Biomol Struct Dyn 2025; 43:4063-4080. [PMID: 38197579 DOI: 10.1080/07391102.2024.2301744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
The Dengue virus (DENV) has been increasingly recognized as a prevalent viral pathogen responsible for global transmission of infection. It has been established that DENV's NS5 methyltransferase (MTase) controls viral replication. As a result, NS5 MTase is considered a potentially useful drug target for DENV. In this study, the two phases of virtual screening were conducted using the ML-based QSAR model and molecular docking to identify potential compounds against NS5 of DENV. Four medicinal plants [Aloe vera, Cannabis sativa (Hemp), Ocimum sanctum (Holy Basil; Tulsi), and Zingiber officinale (Ginger)] that showed anti-viral properties were selected for sourcing the phytochemicals and screening them against NS5. Additionally, re-docking at higher exhaustiveness and interaction analysis were performed which resulted in the identification of the top four hits (135398658, 5281675, 119394, and 969516) which showed comparable results with the control Sinefungin (SFG). Post molecular dynamics simulation, 135398658 showed the lowest RMSD (0.4-0.5 nm) and the maximum number of hydrogen bonds (eight hydrogen bonds) after the control while 5281675 and 969516 showed comparable hydrogen bonds to the control. These compounds showed direct interactions with the catalytic site residues GLU111 and ASP131, in addition to this these compounds showed stable complex formation as depicted by principal component analysis and free energy landscape. 135398658 showed lower total binding free energy (ΔGTotal = -36.56 kcal/mol) than the control, while 5281675 had comparable values to the control (ΔGTotal = -34.1 kcal/mol). Overall, the purpose of this study was to identify phytochemicals that inhibit NS5 function, that could be further tested experimentally to treat dengue virus (DENV).
Collapse
Affiliation(s)
- Faisal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ehssan H Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Microbiology and Parasitology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, Sudan
| | - Shamshir Khan
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Zia Ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
2
|
El-Nashar HAS, Eldahshan OA, Fattah NFA, Loutfy SA, Abdel-Salam IM. HPLC-ESI/MS-MS characterization of compounds in Dolomiaea costus extract and evaluation of cytotoxic and antiviral properties: molecular mechanisms underlying apoptosis-inducing effect on breast cancer. BMC Complement Med Ther 2023; 23:354. [PMID: 37803435 PMCID: PMC10559653 DOI: 10.1186/s12906-023-04164-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Dolomiaea costus (syn: Saussurea costus; Family Asteraceae) occupies an important place in the traditional Chinese medicinal plants and is prescribed for a wide range of disorders. The current study aimed to tentatively identify the phytoconstituents of D. costus extract and to explore antiproliferative activity against human breast cancer cells and its possible apoptotic mechanism along with antiviral activity against human adenovirus 5 (Adv-5). METHODS The phytoconstituents of 70% ethanol extract of D. costus were assessed using HPLC/ESI-MS/MS technique. The cell viability was investigated against breast cancer cell line (MCF-7) via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mechanistically, the apoptotic effects on the Bax, Bcl2 and Caspase 3 were determined via quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR). Further, the antiviral activity was assessed against Adv-5 based on virucidal and adsorption mechanisms. RESULTS The HPLC/MS analysis of the extract revealed tentative identification of twenty compounds of polyphenolic nature, mainly flavonoids, lignans, coumarins, and anthocyanidins. The plant extract showed a cytotoxic effect against MCF-7 and Vero cells with IC50 values of 15.50 and 44 µg/ml, respectively, indicating its aggressiveness against the proliferation of breast cancer cells as confirmed by apoptotic genes expression which revealed upregulation of Bax and Caspase 3 but further insight analysis is needed to explore exact mechanistic pathway. Antiviral activity against Adv-5 was observed at a non-toxic concentration of the tested extract. CONCLUSIONS Such observations against human breast cancer and viral replication supported further studies for nanoformulations in drug delivery systems as targeting therapy and in vivo studies before biomedical applications.
Collapse
Affiliation(s)
- Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
- Centre of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| | - Nasra F Abdel Fattah
- Virology & Immunology Unit, Cancer Biology Dept, National Cancer Institute (NCI), Cairo University, Fom El-Khalig 11796, Cairo, Egypt
| | - Samah A Loutfy
- Virology & Immunology Unit, Cancer Biology Dept, National Cancer Institute (NCI), Cairo University, Fom El-Khalig 11796, Cairo, Egypt
- Nanotechnology research center, the British University in Egypt, Suez Desert Road, P.O. Box 43, El-Shorouk City, Cairo, 11837, Egypt
| | - Ibrahim M Abdel-Salam
- Biochemistry and Molecular Biology Unit, Cancer Biology Dept, National Cancer Institute (NCI), Cairo University, Fom El-Khalig 11796, Cairo, Egypt.
| |
Collapse
|
3
|
Li X, Yang E, Li X, Fan T, Guo S, Yang H, Wu B, Wang H. MAVS-Based Reporter Systems for Real-Time Imaging of EV71 Infection and Antiviral Testing. Viruses 2023; 15:v15051064. [PMID: 37243150 DOI: 10.3390/v15051064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Enterovirus consists of a variety of viruses that could cause a wide range of illness in human. The pathogenesis of these viruses remains incompletely understood and no specific treatment is available. Better methods to study enterovirus infection in live cells will help us better understand the pathogenesis of these viruses and might contribute to antiviral development. Here in this study, we developed fluorescent cell-based reporter systems that allow sensitive distinction of individual cells infected with enterovirus 71 (EV71). More importantly, these systems could be easily used for live-cell imaging by monitoring viral-induced fluorescence translocation after EV71 infection. We further demonstrated that these reporter systems could be used to study other enterovirus-mediated MAVS cleavage and they are sensitive for antiviral activity testing. Therefore, integration of these reporters with modern image-based analysis has the potential to generate new insights into enterovirus infection and facilitate antiviral development.
Collapse
Affiliation(s)
- Xiaozhen Li
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - E Yang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xinyu Li
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Tingting Fan
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Shangrui Guo
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hang Yang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bo Wu
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hongliang Wang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
4
|
Zhang L, Wang X, Ming A, Tan W. Pseudotyped Virus for Flaviviridae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:313-327. [PMID: 36920705 DOI: 10.1007/978-981-99-0113-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Members of Flaviviridae are enveloped single positive-stranded RNA viruses including hepacivirus, pestivirus, pegivirus, and mosquito-transmitted flavivirus, which are important pathogens of infectious diseases and pose serious threats to human health. Pseudotyped virus is an artificially constructed virus-like particle, which could infect host cells similar to a live virus but cannot produce infectious progeny virus. Therefore, pseudotyped virus has the advantages of a wide host range, high transfection efficiency, low biosafety risk, and accurate and objective quantification. It has been widely used in biological characteristics, drug screening, detection methods, and vaccine evaluation of Flaviviridae viruses like hepatitis C virus, Japanese encephalitis virus, dengue virus, and Zika virus.
Collapse
Affiliation(s)
- Leiliang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiao Wang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Annan Ming
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
5
|
Shi S, Zheng X, Suzuki R, Li Z, Shiota T, Wang J, Hirai-Yuki A, Liu Q, Muramatsu M, Song SJ. Novel flavonoid hybrids as potent antiviral agents against hepatitis A: Design, synthesis and biological evaluation. Eur J Med Chem 2022; 238:114452. [PMID: 35597006 DOI: 10.1016/j.ejmech.2022.114452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Two series of flavonoid hybrids, totaling 42 compounds, were designed, synthesized and evaluated to develop antiviral compounds effective against hepatitis A virus (HAV). A recombinant viral screening system revealed that most of the synthesized derivatives exhibited significant anti-HAV activity, and compounds B2, B3, B5 and B27 were identified as potential inhibitors of HAV. Post-treatment of cells with B2, B3, B5 and B27 after HAV infection strongly suppressed HAV infection, whereas pretreatment or simultaneous treatment were ineffective. Furthermore, these four compounds significantly inhibited HAV (HM175/18f strain) production in a dose-dependent manner. Analyses using HAV subgenomic replicon systems indicated that these compounds specifically inhibit HAV RNA replication. More importantly, the most potent compounds B2 and B27 also showed clear inhibitory effects on two other HAV strains, KRM031 and TKM005, which also isolated from clinical patients. Our study is the first to report these newly designed flavonoid hybrids as lead compounds for the development of novel anti-HAV drugs.
Collapse
Affiliation(s)
- Shaochun Shi
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xin Zheng
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Ziyue Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Tomoyuki Shiota
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, 650-0047, Kobe, Japan
| | - Jiayin Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Asuka Hirai-Yuki
- Management Department of Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, 162-8640, Tokyo, Japan; Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, 650-0047, Kobe, Japan.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|