1
|
Sprunger ML, Jackrel ME. The role of Matrin-3 in physiology and its dysregulation in disease. Biochem Soc Trans 2024; 52:961-972. [PMID: 38813817 PMCID: PMC11209761 DOI: 10.1042/bst20220585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
The dysfunction of many RNA-binding proteins (RBPs) that are heavily disordered, including TDP-43 and FUS, are implicated in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These proteins serve many important roles in the cell, and their capacity to form biomolecular condensates (BMCs) is key to their function, but also a vulnerability that can lead to misregulation and disease. Matrin-3 (MATR3) is an intrinsically disordered RBP implicated both genetically and pathologically in ALS/FTD, though it is relatively understudied as compared with TDP-43 and FUS. In addition to binding RNA, MATR3 also binds DNA and is implicated in many cellular processes including the DNA damage response, transcription, splicing, and cell differentiation. It is unclear if MATR3 localizes to BMCs under physiological conditions, which is brought further into question due to its lack of a prion-like domain. Here, we review recent studies regarding MATR3 and its roles in numerous physiological processes, as well as its implication in a range of diseases.
Collapse
Affiliation(s)
- Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, U.S.A
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO 63130, U.S.A
| |
Collapse
|
2
|
Santos JR, Park J. MATR3's Role beyond the Nuclear Matrix: From Gene Regulation to Its Implications in Amyotrophic Lateral Sclerosis and Other Diseases. Cells 2024; 13:980. [PMID: 38891112 PMCID: PMC11171696 DOI: 10.3390/cells13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Matrin-3 (MATR3) was initially discovered as a component of the nuclear matrix about thirty years ago. Since then, accumulating studies have provided evidence that MATR3 not only plays a structural role in the nucleus, but that it is also an active protein involved in regulating gene expression at multiple levels, including chromatin organization, DNA transcription, RNA metabolism, and protein translation in the nucleus and cytoplasm. Furthermore, MATR3 may play a critical role in various cellular processes, including DNA damage response, cell proliferation, differentiation, and survival. In addition to the revelation of its biological role, recent studies have reported MATR3's involvement in the context of various diseases, including neurodegenerative and neurodevelopmental diseases, as well as cancer. Moreover, sequencing studies of patients revealed a handful of disease-associated mutations in MATR3 linked to amyotrophic lateral sclerosis (ALS), which further elevated the gene's importance as a topic of study. In this review, we synthesize the current knowledge regarding the diverse functions of MATR3 in DNA- and RNA-related processes, as well as its involvement in various diseases, with a particular emphasis on ALS.
Collapse
Affiliation(s)
- Jhune Rizsan Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeehye Park
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
3
|
Gastelum S, Michael AF, Bolger TA. Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1814. [PMID: 37671427 DOI: 10.1002/wrna.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Stephanie Gastelum
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Allison F Michael
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Timothy A Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Dominick M, Houchins N, Venugopal V, Zuberi AR, Lutz CM, Meechooveet B, Van Keuren-Jensen K, Bowser R, Medina DX. MATR3 P154S knock-in mice do not exhibit motor, muscle or neuropathologic features of ALS. Biochem Biophys Res Commun 2023; 645:164-172. [PMID: 36689813 PMCID: PMC10046992 DOI: 10.1016/j.bbrc.2023.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Matrin 3 is a nuclear matrix protein that has many roles in RNA processing including splicing and transport of mRNA. Many missense mutations in the Matrin 3 gene (MATR3) have been linked to familial forms of amyotrophic lateral sclerosis (ALS) and distal myopathy. However, the exact role of MATR3 mutations in ALS and myopathy pathogenesis is not understood. To demonstrate a role of MATR3 mutations in vivo, we generated a novel CRISPR/Cas9 mediated knock-in mouse model harboring the MATR3 P154S mutation expressed under the control of the endogenous promoter. The P154S variant of the MATR3 gene has been linked to familial forms of ALS. Heterozygous and homozygous MATR3 P154S knock-in mice did not develop progressive motor deficits compared to wild-type mice. In addition, ALS-like pathology did not develop in nervous or muscle tissue in either heterozygous or homozygous mice. Our results suggest that the MATR3 P154S variant is not sufficient to produce ALS-like pathology in vivo.
Collapse
Affiliation(s)
- Marissa Dominick
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Nicole Houchins
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Vinisha Venugopal
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Aamir R Zuberi
- Rare and Orphan Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Cathleen M Lutz
- Rare and Orphan Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Bessie Meechooveet
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Robert Bowser
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - David X Medina
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
| |
Collapse
|
5
|
Xue C, Liu C, Yun X, Zou X, Li X, Wang P, Li F, Ge Y, Zhang Q, Xie X, Li X, Luo B. Knockdown of hsa_circ_0008922 inhibits the progression of glioma. PeerJ 2022; 10:e14552. [PMID: 36570001 PMCID: PMC9784332 DOI: 10.7717/peerj.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A glioma is a tumor originating from glial cells in the central nervous system. Although significant progress has been made in diagnosis and treatment, most high-grade glioma patients are prone to recurrence. Therefore, molecular targeted therapy may become a new direction for adjuvant therapy in glioma. In recent years, many studies have revealed that circular RNA (circRNA) may play an important role in the occurrence and development of many tumors including gliomas. Our previous study found that the expression of hsa_circ_0008922 was up-regulated in glioma tissues upon RNA sequencing. The biological mechanism of circ_0008922 is still unreported in gliomas. Therefore, in this study, we preliminarily outlined the expression of hsa_circ_0008922 in glioma and explored its biological functions. METHODS The expression of hsa_circ_0008922 in forty glioma tissues and four glioma cell lines (A172, U251, SF763 and U87) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The correlation between hsa_circ_0008922 expression and clinicopathological features of glioma patients was evaluated by Fisher's exact test. To understand the potential function of hsa_circ_0008922 in glioma, we constructed small interfering RNA (siRNA) to hsa_circ_0008922 to downregulate its expression in glioma cell lines A172 and U251. With these hsa_circ_0008922 downregulated cells, a series of assays were carried out as follows. Cell proliferation was detected by CCK8 assay, migration and invasion were determined by wound healing assay and transwell assay, respectively. Colony formation ability was evaluated by plate clonogenic assay. Moreover, flow cytometry combined with Western blot was performed to analyze apoptosis status and the expression of apoptotic related proteins (caspase 3 and caspase 9). Finally, the possible biological pathways and potential miRNA targets of hsa_circ_0008922 were predicted by bioinformatics. RESULTS We found that the expression of hsa_circ_0008922 in glioma tissues was 3.4 times higher than that in normal tissues. The expression of has_circ_0008922 was correlated with WHO tumor grade. After down-regulating the expression of hsa_circ_0008922, malignant biological behavior of glioma cells was inhibited, such as cell proliferation, colony formation, migration, and invasion. At the same time, it also induced apoptosis of glioma cells. Predicted analysis by bioinformatics demonstrated that hsa_circ_0008922 may be involved in tumor-related pathways by acting as a molecular sponge for multiple miRNAs (hsa-let-7e-5p, hsa-miR-506-5p, hsa-let-7b-5p, hsa-let-7c-5p and hsa-let-7a-5p). Finally, we integrated our observation to build a circRNA-miRNA-mRNA predictive network.
Collapse
Affiliation(s)
- Chunhong Xue
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Postdoctoral Research Station, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Xiang Yun
- Department of International Cooperation and External Exchange, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoqiong Zou
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Xin Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Ping Wang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Feng Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Yingying Ge
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Preclinical Medicine (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Preclinical Medicine (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Preclinical Medicine (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
- Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xisheng Li
- Department of Neurosurgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Preclinical Medicine (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
6
|
Sprunger ML, Lee K, Sohn BS, Jackrel ME. Molecular determinants and modifiers of Matrin-3 toxicity, condensate dynamics, and droplet morphology. iScience 2022; 25:103900. [PMID: 35252808 PMCID: PMC8889142 DOI: 10.1016/j.isci.2022.103900] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Matrin-3 (MATR3) is a DNA- and RNA-binding protein implicated in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and distal myopathy. Here, we report the development of a yeast model of MATR3 proteotoxicity and aggregation. MATR3 is toxic and forms dynamic shell-like nuclear condensates in yeast. Disease-associated mutations in MATR3 impair condensate dynamics and disrupt condensate morphology. MATR3 toxicity is largely driven by its RNA-recognitions motifs (RRMs). Further, deletion of one or both RRMs drives coalescence of these condensates. Aberrant phase separation of several different RBPs underpins ALS/FTD, and we have engineered Hsp104 variants to reverse this misfolding. Here, we demonstrate that these same variants also counter MATR3 toxicity. We suggest that these Hsp104 variants which rescue MATR3, TDP-43, and FUS toxicity might be employed against a range of ALS/FTD-associated proteins. We anticipate that our yeast model could be a useful platform to screen for modulators of MATR3 misfolding.
Collapse
Affiliation(s)
- Macy L. Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Ken Lee
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Brian S. Sohn
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
7
|
Selective Loss of MATR3 in Spinal Interneurons, Upper Motor Neurons and Hippocampal CA1 Neurons in a MATR3 S85C Knock-In Mouse Model of Amyotrophic Lateral Sclerosis. BIOLOGY 2022; 11:biology11020298. [PMID: 35205163 PMCID: PMC8869279 DOI: 10.3390/biology11020298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the motor neurons in the brain and spinal cord. Mutations in the gene Matr3 have been linked to ALS, including the autosomal dominant missense mutation S85C. We previously created a mouse model containing the S85C mutation in the Matr3 gene to understand how it causes ALS. The S85C mice exhibited MATR3 staining loss in selective populations of degenerating neurons, such as Purkinje cells in the cerebellum and α-motor neurons in the lumbar spinal cord. However, studies have shown that neurons other than motor neurons may be involved in contributing to ALS; therefore, we investigated additional neuronal cell types in the spinal cord and brain. Here, we found that MATR3 staining is selectively reduced in interneurons and α-motor neurons of the cervical and thoracic regions of the spinal cord, as well as in subsets of upper motor neurons and hippocampal neurons. These neurons did not exhibit cell body loss; however, how the MATR3 loss affects neuronal function remains to be determined. Overall, these findings demonstrate that the MATR3 S85C mutation affects other neuronal types of the brain and spinal cord in addition to motor neurons, suggesting that these additional neuronal types are involved in ALS pathogenesis. Abstract The neuropathological hallmark of amyotrophic lateral sclerosis (ALS) is motor neuron degeneration in the spinal cord and cortex. Accumulating studies report that other neurons in the central nervous system (CNS) are also affected in ALS. Mutations in Matr3, which encodes a nuclear matrix protein involved in RNA splicing, have been linked to ALS. Previously, we generated a MATR3 S85C knock-in (KI) mouse model that recapitulates early-stage features of ALS. We reported that MATR3 S85C KI mice exhibit defects in lumbar spinal cord motor neurons and in cerebellar Purkinje cells, which are associated with reduced MATR3 immunoreactivity. Here, we show that neurons in various other regions of the CNS are affected in MATR3 S85C KI mice. Using histological analyses, we found selective loss of MATR3 staining in α-motor neurons, but not γ-motor neurons in the cervical and thoracic spinal cord. Loss of MATR3 was also found in parvalbumin-positive interneurons in the cervical, thoracic and lumbar spinal cord. In addition, we found the loss of MATR3 in subsets of upper motor neurons and hippocampal CA1 neurons. Collectively, our findings suggest that these additional neuronal types may contribute to the disease process in MATR3 S85C KI mice.
Collapse
|