1
|
Thibaut MM, Roumain M, Piron E, Gillard J, Loriot A, Neyrinck AM, Rodriguez J, Massart I, Thissen JP, Huot JR, Pin F, Bonetto A, Delzenne NM, Muccioli GG, Bindels LB. The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia. Gut Microbes 2025; 17:2449586. [PMID: 39780051 PMCID: PMC11730681 DOI: 10.1080/19490976.2025.2449586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA). This reduction in hepatic TDCA occurred before the appearance of cachexia. Longitudinal analysis of the gut microbiota pinpointed an ASV, identified as Xylanibacter rodentium, as a bacterium potentially involved in the reduced production of TDCA. Coherently, stable isotope-based experiments highlighted a robust decrease in the microbial 7α-dehydroxylation (7α-DH) activity with no changes in the bile salt hydrolase (BSH) activity in cachectic mice. This approach also highlighted a reduced microbial 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 12α-hydroxysteroid dehydrogenase (12α-HSDH) activities in these mice. The contribution of the lower production of TDCA to cancer cachexia was explored in vitro and in vivo. In vitro, TDCA prevented myotube atrophy, whereas in vivo hepatic whole transcriptome analysis revealed that TDCA administration to cachectic mice improved the unfolded protein response and cholesterol homeostasis pathways. Coherently, TDCA administration reversed hepatic cholesterol accumulation in these mice. Altogether, this work highlights the contribution of the gut microbiota to bile acid dysmetabolism and the therapeutic interest of the secondary bile acid TDCA for hepatic cholesterol homeostasis in the context of cancer cachexia. Such discovery may prove instrumental in the understanding of other metabolic diseases characterized by microbial dysbiosis. More broadly, our work demonstrates the interest and relevance of microbial activity measurements using stable isotopes, an approach currently underused in the microbiome field.
Collapse
Affiliation(s)
- Morgane M. Thibaut
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Martin Roumain
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Edwige Piron
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Justine Gillard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Axelle Loriot
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle Massart
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Joshua R. Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Welbio Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Liu S, Chen X, Chen D, Yu B, Zheng P, Luo Y, He J, Huang Z. Oleanolic acid inhibits appetite through the TGR5/cAMP signaling pathway. J Nutr Biochem 2025; 138:109844. [PMID: 39842616 DOI: 10.1016/j.jnutbio.2025.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/23/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Inhibition of appetite is an effective approach to fight obesity. Recently, bile acids have been reported to suppress appetite and alleviate obesity via the Takeda G protein-coupled receptor 5 (TGR5). However, whether the downstream signaling molecule cyclic adenosine monophosphate (cAMP) of TGR5 is involved in this process remains unclear. Oleanolic acid (OA) is a plant analogue of bile acids. The study aimed to explore the effect of dietary OA supplementation on appetite and to examine the role of TGR5/cAMP signaling in this process. In our study, mice were divided into four treatment groups: basal diet, 50mg/kg OA-supplemented diet, 100mg/kg OA-supplemented diet, and 30mg/kg tauroursodeoxycholic acid (TUDCA)-supplemented diet. Our results showed that dietary supplementation of OA and TUDCA both suppressed appetite. Additionally, OA and TUDCA downregulated the expression of appetite-stimulating factors while upregulating appetite-suppressing factors in the hypothalamus. Furthermore, OA was found to activate TGR5 signaling in the hypothalamus. Mechanistic studies using N38 cells revealed that OA reduced the expression and secretion of agouti-related peptide (AgRP), while inhibition of TGR5 and cAMP attenuated this effect of OA. In conclusion, our findings suggest that OA may suppress appetite through activation of the TGR5/cAMP signaling pathway in the hypothalamus.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
Ji Y, Jiang Q, Chen B, Chen X, Li A, Shen D, Shen Y, Liu H, Qian X, Yao X, Sun H. Endoplasmic reticulum stress and unfolded protein response: Roles in skeletal muscle atrophy. Biochem Pharmacol 2025; 234:116799. [PMID: 39952329 DOI: 10.1016/j.bcp.2025.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/18/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Skeletal muscle atrophy is commonly present in various pathological states, posing a huge burden on society and patients. Increased protein hydrolysis, decreased protein synthesis, inflammatory response, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are all important molecular mechanisms involved in the occurrence and development of skeletal muscle atrophy. The potential mechanisms of ERS and UPR in skeletal muscle atrophy are extremely complex and have not yet been fully elucidated. This article elucidates the molecular mechanisms of ERS and UPR, and discusses their effects on different types of muscle atrophy (muscle atrophy caused by disuse, cachexia, chronic kidney disease (CKD), diabetes mellitus (DM), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), aging, sarcopenia, obesity, and starvation), and explores the preventive and therapeutic strategies targeting ERS and UPR in skeletal muscle atrophy, including inhibitor therapy and drug therapy. This review aims to emphasize the importance of endoplasmic reticulum (ER) in maintaining skeletal muscle homeostasis, which helps us further understand the molecular mechanisms of skeletal muscle atrophy and provides new ideas and insights for the development of effective therapeutic drugs and preventive measures for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Quan Jiang
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province 215500, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Dingding Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
4
|
Jo HS, Kim MJ, Amaya-Quiroz L, Yoon H, Han BK, Hong JY, Kim YJ. Suppressive Effects of Arriheuk Wheat Sprout Extract on Muscle Atrophy in Dexamethasone-Induced C2C12 Myotubes and a Mouse Model. J Med Food 2024; 27:1201-1209. [PMID: 39388119 DOI: 10.1089/jmf.2024.k.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Skeletal muscle atrophy refers to the loss of muscle strength and mass due to decreased protein synthesis or increased protein degradation. Various conditions can cause muscle atrophy, including aging, heart disease, chronic illness, obstructive pulmonary disease, kidney failure, diabetes, AIDS, cancer, sepsis, and steroid use. Various natural materials have been studied for the prevention of muscle atrophy. In this study, we found that extracts from the sprouts of purple wheat, Arriheuk, prevented muscle atrophy in vitro and in vivo. Arriheuk wheat sprouts extract inhibited the expression of muscle protein breakdown factors, which were increased by dexamethasone, and improved muscle strength. In C2C12 myotubes, Arriheuk wheat sprout extract (ARE) protected against dexamethasone-induced muscle atrophy by potentiating Akt/mammalian target of rapamycin and AMP-activated protein kinase (AMPK)/forkhead box O3 (AMPK/Foxo3) signaling and inhibiting the expression of Atrogin-1, muscle RING-finger protein-1 (MuRF1), and Myostatin. In addition, the administration of ARE in an animal model of muscle atrophy induced by dexamethasone prevented myocardial and muscle strength loss by regulating the expression of muscle atrophy-related factors by affecting AMPK/Foxo3 signaling. Taken together, these results suggest that Arriheuk wheat sprouts extract effectively alleviates muscle atrophy by regulating the synthesis and breakdown of muscle proteins.
Collapse
Affiliation(s)
- Hyun Sun Jo
- Department of Food and Biotechnology Korea University, Sejong 30019, Korea
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
| | - Mi Jeong Kim
- Department of Food and Biotechnology Korea University, Sejong 30019, Korea
- Institute of Natural Sciences, Korea University, Sejong 30019, Korea
| | - Laura Amaya-Quiroz
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada
| | - Hyeock Yoon
- Department of Food and Biotechnology Korea University, Sejong 30019, Korea
- Department of Food Regulatory Science, Korea University, Sejong 30019, Korea
| | - Bok Kyung Han
- Department of Food and Biotechnology Korea University, Sejong 30019, Korea
- Department of Food Regulatory Science, Korea University, Sejong 30019, Korea
| | - Ji Youn Hong
- Department of Food and Biotechnology Korea University, Sejong 30019, Korea
- Department of Food Regulatory Science, Korea University, Sejong 30019, Korea
| | - Young Jun Kim
- Department of Food and Biotechnology Korea University, Sejong 30019, Korea
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
- Department of Food Regulatory Science, Korea University, Sejong 30019, Korea
| |
Collapse
|
5
|
Herrmann M, Rodriguez-Blanco G, Balasso M, Sobolewska K, Semeraro MD, Alonso N, Herrmann W. The role of bile acid metabolism in bone and muscle: from analytics to mechanisms. Crit Rev Clin Lab Sci 2024; 61:510-528. [PMID: 38488591 DOI: 10.1080/10408363.2024.2323132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 08/25/2024]
Abstract
Osteoporosis and sarcopenia are both common age-related disorders that are associated with increased morbidity and mortality. Bone and muscle are metabolically very active tissues that require large amounts of energy. Bile acids (BAs), a group of liver-derived steroid compounds, are primarily known as emulsifiers that facilitate the resorption of dietary fat and lipids. In addition, they have pleiotropic metabolic functions in lipoprotein and glucose metabolism, inflammation, and intestinal bacterial growth. Through these effects, they are related to metabolic diseases, such as diabetes, hypertriglyceridemia, atherosclerosis, and nonalcoholic steatohepatitis. BAs mediate their metabolic effects through receptor dependent and receptor-independent mechanisms. Emerging evidence suggests that BAs are also involved in bone and muscle metabolism. Under normal circumstances, BAs support bone health by shifting the delicate equilibrium of bone turnover toward bone formation. In contrast, low or excessive amounts of BAs promote bone resorption. In cholestatic liver disease, BAs accumulate in the liver, reach toxic concentrations in the circulation, and thus may contribute to bone loss and muscle wasting. In addition, the measurement of BAs is in rapid evolution with modern mass spectrometry techniques that allow for the detection of a continuously growing number of BAs. This review provides a comprehensive overview of the biochemistry, physiology and measurement of bile acids. Furthermore, it summarizes the existing literature regarding their role in bone and muscle.
Collapse
Affiliation(s)
- Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Giovanny Rodriguez-Blanco
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Marco Balasso
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Katarzyna Sobolewska
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Maria Donatella Semeraro
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Nerea Alonso
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Wolfgang Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Muroya S, Horiuchi Y, Iguchi K, Higuchi T, Sakamoto S, Ojima K, Matsukawa K. Depth of Interbreed Difference in Postmortem Bovine Muscle Determined by CE-FT/MS and LC-FT/MS Metabolomics. Metabolites 2024; 14:261. [PMID: 38786738 PMCID: PMC11123161 DOI: 10.3390/metabo14050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Japanese Brown (JBR) cattle have moderately marbled beef compared to the highly marbled beef of Japanese Black (JBL) cattle; however, their skeletal muscle properties remain poorly characterized. To unveil interbreed metabolic differences over the previous results, we explored the metabolome network changes before and after postmortem 7-day aging in the trapezius muscle of the two cattle breeds by employing a deep and high-coverage metabolomics approach. Using both capillary electrophoresis (CE) and ultra-high-performance liquid chromatography (UHPLC)-Fourier transform mass spectrometry (FT/MS), we detected 522 and 384 annotated peaks, respectively, across all muscle samples. The CE-based results showed that the cattle were clearly separated by breed and postmortem age in multivariate analyses. The metabolism related to glutathione, glycolysis, vitamin K, taurine, and arachidonic acid was enriched with differentially abundant metabolites in aged muscles, in addition to amino acid (AA) metabolisms. The LC-based results showed that the levels of bile-acid-related metabolites, such as tauroursodeoxycholic acid (TUDCA), were high in fresh JBR muscle and that acylcarnitines were enriched in aged JBR muscle, compared to JBL muscle. Postmortem aging resulted in an increase in fatty acids and a decrease in acylcarnitine in the muscles of both cattle breeds. In addition, metabolite set enrichment analysis revealed that JBR muscle was distinctive in metabolisms related to pyruvate, glycerolipid, cardiolipin, and mitochondrial energy production, whereas the metabolisms related to phosphatidylethanolamine, nucleotide triphosphate, and AAs were characteristic of JBL. This suggests that the interbreed differences in postmortem trapezius muscle are associated with carnitine/acylcarnitine transport, β-oxidation, tricarboxylic acid cycle, and mitochondrial membrane stability, in addition to energy substrate and AA metabolisms. These interbreed differences may characterize beef quality traits such as the flavor intensity and oxidative stability.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
- Faculty of Veterinary Medicine, Kagoshima University, Korimoto 890-0065, Kagoshima, Japan
| | - Yuta Horiuchi
- Human Metabolome Technologies Inc., Tsuruoka 997-0052, Yamagata, Japan
| | - Kazuki Iguchi
- Human Metabolome Technologies Inc., Tsuruoka 997-0052, Yamagata, Japan
| | - Takuma Higuchi
- Science Research Center, Kochi University, Nankoku 783-8505, Kochi, Japan
| | - Shuji Sakamoto
- Science Research Center, Kochi University, Nankoku 783-8505, Kochi, Japan
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
| | - Kazutsugu Matsukawa
- Department of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan
| |
Collapse
|
7
|
Zhao P, Zhang L, Feng L, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Zhou XQ. Novel Perspective on Mechanism in Muscle Growth Inhibited by Ochratoxin A Associated with Ferroptosis: Model of Juvenile Grass Carp ( Ctenopharyngodon idella) In Vivo and In Vitro Trials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4977-4990. [PMID: 38386875 DOI: 10.1021/acs.jafc.3c08080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ochratoxin A (OTA) is a common mycotoxin in food and feed that seriously harms human and animal health. This study investigated the effect of OTA on the muscle growth of juvenile grass carp (Ctenopharyngodon idella) and its possible mechanism in vitro. Our results have the following innovative findings: (1) Dietary OTA increased the expression of increasing phase I metabolic enzymes and absorbing transporters while reducing the expression of efflux transporters, thereby increasing their residue in muscles; (2) OTA inhibited the expressions of cell cycle and myogenic regulatory factors (MyoD, MyoG, and MyHC) and induced ferroptosis by decreasing the mRNA and protein expressions of FTH, TFR1, GPX4, and Nrf2 both in vivo and in vitro; and (3) the addition of DFO improved OTA-induced ferroptosis of grass carp primary myoblasts and promoted cell proliferation, while the addition of AKT improved OTA-inhibited myoblast differentiation and fusion, thus inhibiting muscle growth. Overall, this study provides a potential research target to further mitigate the myotoxicity of OTA.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lu Zhang
- Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, Sichuan 610041, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| |
Collapse
|
8
|
Li S, Schönke M, Buurstede JC, Moll TJ, Gentenaar M, Schilperoort M, Visser JA, Kaikaew K, van de Vijver D, Abbassi-Daloii T, Raz V, Aartsma-Rus A, van Putten M, Meijer OC, Kroon J. Sexual Dimorphism in Transcriptional and Functional Glucocorticoid Effects on Mouse Skeletal Muscle. Front Endocrinol (Lausanne) 2022; 13:907908. [PMID: 35898460 PMCID: PMC9309696 DOI: 10.3389/fendo.2022.907908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Muscle atrophy is common in patients with increased glucocorticoid exposure. Glucocorticoid effects are often sex-specific, and while different glucocorticoid responses between male and female subjects are reported, it is unclear why this is. In this study, we evaluated the effects of corticosterone and synthetic glucocorticoid treatment on muscle atrophy in male and female mice. We found that corticosterone treatment reduced grip strength in female mice only, whereas muscle mass was reduced in both sexes. Skeletal muscle transcriptional responses to corticosterone treatment were more pronounced and widespread in male mice. Synthetic glucocorticoid treatment reduced grip strength in both sexes, while female mice were more sensitive to muscle atrophy than male mice. To evaluate the role of androgens, chemically-castrated male mice were treated with synthetic glucocorticoids. We observed additively reduced muscle mass, but did not observe any interaction effects. Although sex differences in glucocorticoid responses in skeletal muscle are partly influenced by androgen signaling, further studies are warranted to fully delineate the underlying mechanisms.
Collapse
Affiliation(s)
- Sheng Li
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jacobus C. Buurstede
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Tijmen J.A. Moll
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Max Gentenaar
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Maaike Schilperoort
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jenny A. Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Kasiphak Kaikaew
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Davy van de Vijver
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Tooba Abbassi-Daloii
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Onno C. Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Jan Kroon,
| |
Collapse
|