1
|
Kofler M, Venugopal S, Gill G, Di Ciano-Oliveira C, Kapus A. M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import. iScience 2025; 28:112105. [PMID: 40224012 PMCID: PMC11986988 DOI: 10.1016/j.isci.2025.112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/22/2024] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
Multiple mechanisms were proposed to mediate the nuclear import of TAZ/YAP, transcriptional co-activators regulating organ growth and regeneration. Our earlier observations showed that TAZ/YAP harbor a C-terminal, unconventional nuclear localization signal (NLS). Here, we show that this sequence, necessary and sufficient for basal, ATP-independent nuclear import, contains an indispensable central methionine flanked by negatively charged residues. Based on these features, we define the M-motif and propose that it is a new class of NLS, also present and import-competent in other cellular (STAT1 and cyclin B1) and viral (ORF6 of SARS-CoV2, VSV-M) proteins. Accordingly, ORF6 SARS-Cov2 competitively inhibits TAZ/YAP uptake, while TAZ abrogates STAT1 import. Similar to viral M-motif proteins, TAZ binds RAE1 and inhibits classic nuclear protein import, including that of antiviral factors (IRF3 and NF-κB). However, RAE1 is dispensable for TAZ import itself. Thus, the TAZ/YAP NLS has a dual function: it mediates unconventional nuclear import and inhibits classic import, contributing to the suppression of antiviral responses.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | - Gary Gill
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | | | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
- Department Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
2
|
Chancharoenthana W, Kamolratanakul S, Rotcheewaphan S, Leelahavanichkul A, Schultz MJ. Recent advances in immunopathogenesis and clinical practice: mastering the challenge-managing of non-tuberculous mycobacteria. Front Immunol 2025; 16:1554544. [PMID: 40176807 PMCID: PMC11961655 DOI: 10.3389/fimmu.2025.1554544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
Non-tuberculous mycobacteria (NTM) are widespread environmental pathogens that can lead to significant disease burden, particularly in immunocompromised individuals, but also in those with a normal immune system. The global incidence of NTM is increasing rapidly, with Mycobacterium avium complex (MAC) being one of the most common types. The immunopathogenesis of the MAC involves a complex interaction between the bacteria and the host immune system. MAC survives and replicates within macrophages by preventing the fusion of phagosomes and lysosomes. The mycobacteria can neutralize reactive oxygen and nitrogen species produced by the macrophages through their own enzymes. Additionally, MAC modulates cytokine production, allowing it to suppress or regulate the immune response. Diagnosing MAC infections can be challenging, and the effectiveness of available treatments may be limited due to MAC's unpredictable resistance to various antimycobacterial drugs in different regions. Treating MAC infection requires a collaborative approach involving different healthcare professionals and ensuring patient compliance. This review aims to shed light on the complexities of MAC infection treatment, discussing the challenges of MAC infection diagnosis, pharmacological considerations, such as drug regimens, drug monitoring, drug interactions, and the crucial role of a multidisciplinary healthcare team in achieving the best possible treatment outcomes for patients.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Marcus J. Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Asano T, Utsumi T, Kagawa R, Karakawa S, Okada S. Inborn errors of immunity with loss- and gain-of-function germline mutations in STAT1. Clin Exp Immunol 2023; 212:96-106. [PMID: 36420581 PMCID: PMC10128167 DOI: 10.1093/cei/uxac106] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
STAT1 dysfunction causes a wide range of immune dysregulation phenotypes, which have been classified into four disease types, namely, (i) autosomal recessive (AR) complete STAT1 deficiency, (ii) AR partial STAT1 deficiency, (iii) autosomal dominant (AD) STAT1 deficiency, and (iv) AD STAT1 gain of function (GOF), based on their mode of inheritance and function. Disease types (i, ii, and iii) are caused by STAT1 loss-of-function (LOF) mutations, whereas disease type (iv) is caused by STAT1 GOF mutations. Therefore, the functional analysis of mutations is necessary for the precise diagnosis.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takanori Utsumi
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
4
|
Du J, Liu Y, Wu X, Sun J, Shi J, Zhang H, Zheng A, Zhou M, Jiang X. BRD9-mediated chromatin remodeling suppresses osteoclastogenesis through negative feedback mechanism. Nat Commun 2023; 14:1413. [PMID: 36918560 PMCID: PMC10014883 DOI: 10.1038/s41467-023-37116-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9), a component of non-canonical BAF chromatin remodeling complex, has been identified as a critical therapeutic target in hematological diseases. Despite the hematopoietic origin of osteoclasts, the role of BRD9 in osteoclastogenesis and bone diseases remains unresolved. Here, we show Brd9 deficiency in myeloid lineage enhances osteoclast lineage commitment and bone resorption through downregulating interferon-beta (IFN-β) signaling with released constraint on osteoclastogenesis. Notably, we show that BRD9 interacts with transcription factor FOXP1 activating Stat1 transcription and IFN-β signaling thereafter. Besides, function specificity of BRD9 distinguished from BRD4 during osteoclastogenesis has been evaluated. Leveraging advantages of pharmacological modulation of BRD9 and flexible injectable silk fibroin hydrogel, we design a local deliver system for effectively mitigating zoledronate related osteonecrosis of the jaw and alleviating acute bone loss in lipopolysaccharide-induced localized aggressive periodontitis. Overall, these results demonstrate the function of BRD9 in osteoclastogenesis and its therapeutic potential for bone diseases.
Collapse
Affiliation(s)
- Jiahui Du
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Yili Liu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Xiaolin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Jinrui Sun
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Junfeng Shi
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Hongming Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Ao Zheng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China.
| |
Collapse
|
5
|
Ono R, Tsumura M, Shima S, Matsuda Y, Gotoh K, Miyata Y, Yoto Y, Tomomasa D, Utsumi T, Ohnishi H, Kato Z, Ishiwada N, Ishikawa A, Wada T, Uhara H, Nishikomori R, Hasegawa D, Okada S, Kanegane H. Novel STAT1 Variants in Japanese Patients with Isolated Mendelian Susceptibility to Mycobacterial Diseases. J Clin Immunol 2023; 43:466-478. [PMID: 36336768 DOI: 10.1007/s10875-022-01396-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Heterozygous dominant-negative (DN) STAT1 variants are responsible for autosomal dominant (AD) Mendelian susceptibility to mycobacterial disease (MSMD). In this paper, we describe eight MSMD cases from four kindreds in Japan. METHODS An inborn error of immunity-related gene panel sequencing was performed using genomic DNA extracted from whole blood samples. The identified variants were validated using Sanger sequencing. Functional analysis was evaluated with a luciferase reporter assay and co-transfection assay in STAT1-deficient cells. RESULTS Patient 1.1 was a 20-month-old boy with multifocal osteomyelitis and paravertebral abscesses caused by Mycobacterium bovis bacillus Calmette-Guérin (BCG). Although the paravertebral abscess was refractory to antimycobacterial drugs, the addition of IFN-γ and drainage of the abscess were effective. Intriguingly, his mother (patient 1.2) showed an uneventful clinical course except for treatment-responsive tuberculous spondylitis during adulthood. Patient 2.1 was an 8-month-old boy with lymphadenopathy and lung nodules caused by BCG. He responded well to antimycobacterial drugs. His mother (patient 2.2) was healthy. Patient 3.1 was a 11-year-old girl with suspected skin tuberculosis. Her brother (patient 3.2) had BCG-osis, but their mother (patient 3.3) was healthy. Patient 4 was an 8-month-old girl with left axillary and supraclavicular lymphadenopathy associated with BCG vaccination. Kindreds 1, 2, and 3 were shown to have novel heterozygous variants (V642F, R588C, and R649G) in STAT1, respectively. Kindred 4 had previously reported heterozygous variants (Q463H). A luciferase reporter assay in STAT1-deficient cells followed by IFN-γ stimulation confirmed that these variants are loss-of-function. In addition, with co-transfection assay, we confirmed all of these variants had DN effect on WT STAT1. CONCLUSION Four kindred MSMD subjects with 3 novel variants and 1 known variant in STAT1 were identified in this study. AD STAT1 deficiency might be prevalent in Japanese patients with BCG-associated MSMD.
Collapse
Affiliation(s)
- Rintaro Ono
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Saho Shima
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Yusuke Matsuda
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan.
| | - Kenji Gotoh
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, Japan.
| | - Yurina Miyata
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Yuko Yoto
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Utsumi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Zenichiro Kato
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Naruhiko Ishiwada
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Aki Ishikawa
- Department of Medical Genetics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University, Sapporo, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8519, Japan.
| |
Collapse
|
6
|
Ye F, Zhang W, Dong J, Peng M, Fan C, Deng W, Zhang H, Yang L. A novel STAT1 loss-of-function mutation associated with Mendelian susceptibility to mycobacterial disease. Front Cell Infect Microbiol 2022; 12:1002140. [PMID: 36339330 PMCID: PMC9635896 DOI: 10.3389/fcimb.2022.1002140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare congenital immune deficiency characterized by susceptibility to weakly virulent mycobacteria. Loss-of-function (LOF) mutation of signal transducer and activator of transcription 1 (STAT1) is one of the common genetic causes of MSMD. In this study, we identified a patient who presented with multiple lymph node enlargements and multiple osteolytic disruptions. Mycobacterium gordonae infection was confirmed by metagenomic next-generation sequencing. Whole-exome sequencing identified a novel paternal heterozygous mutation in exon 22 of STAT1 (NM_007315.4, c.1892T>C, p.Val631Ala). This variant was confirmed pathogenic by multiple software predictions. Based on functional assays, STAT1 expression in STAT1V631A cells was not different from STAT1WT cells. But STAT1V631A mutation caused much lower activation of STAT1 when stimulated by interferon-γ (IFN-γ). Fluorescence localization analysis revealed that both STAT1V631A and STAT1WT proteins were located in the cytoplasm, and only a few STAT1V631A proteins were translocated to the nucleus in response to IFN-γ. These results suggest that STAT1V631A leads to LOF in IFN-γ-mediated mycobacterial immunity, resulting in MSMD. Treatment with antibiotics has achieved ideal disease control for this patient, and no adverse events occurred during follow-up. The STAT1 LOF deficiency is a genetic cause of MSMD, which should be considered in patients with mycobacterial disease, especially those with bone involvement.
Collapse
|