1
|
Peiu SN, Zugun-Eloae F, Stoica B, Anisie E, Iosep DG, Danciu M, Silivestru-Crețu I, Akad F, Avadanei AN, Condur L, Popa RF, Mocanu V. Obesity-Induced PVAT Dysfunction and Atherosclerosis Development: The Role of GHSR-1a in Increased Macrophage Infiltration and Adipocytokine Secretion. J Cardiovasc Dev Dis 2025; 12:87. [PMID: 40137085 PMCID: PMC11942683 DOI: 10.3390/jcdd12030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/03/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
In obesity, recent research revealed that increased expression of the growth hormone secretagogue receptor (GHSR) in macrophages plays a pivotal role in the development of meta-inflammation, promoting macrophage infiltration and pro-inflammatory polarization. This study aimed to examine the association between GHSR-1a expression in atherosclerotic plaques and adjacent perivascular adipose tissue (PVAT) from 11 patients with obesity and peripheral artery disease (PAD) who underwent revascularization procedures. Immunohistochemistry was used to assess the expression of CD68, CD80, and CD14, while tissue homogenate levels of adiponectin, leptin, IL-6, and CRP were quantified via ELISA. Serum markers of inflammation were also measured. Among patients with GHSR-1a-positive (+) macrophages in atherosclerotic plaques, we observed significantly higher white blood cell counts and platelet-to-lymphocyte ratios in serum, a lower adiponectin-to-leptin ratio, and elevated IL-6 levels in both arterial and PVAT homogenates. Our findings suggest a link between GHSR-1a and macrophage/monocyte infiltration, macrophage polarization, and adipocytokine secretion in atherosclerotic plaques associated with obesity-induced PVAT dysfunction.
Collapse
Affiliation(s)
- Sorin Nicolae Peiu
- Department of Vascular Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (S.N.P.); (A.N.A.); (R.F.P.)
- Department of Morpho-Functional Sciences II (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (I.S.-C.); (F.A.)
| | - Florin Zugun-Eloae
- Department of Morpho-Functional Sciences I (Immunology), “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
- Regional Institute of Oncology, TRANSCEND Research Centre, 2-4, General Mathias Berthelot, 700483 Iasi, Romania;
| | - Bogdan Stoica
- Department of Morpho-Functional Sciences II (Biochemistry), “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania;
| | - Ecaterina Anisie
- Regional Institute of Oncology, TRANSCEND Research Centre, 2-4, General Mathias Berthelot, 700483 Iasi, Romania;
| | - Diana Gabriela Iosep
- Department of Morpho-Functional Sciences I (Morphopathology), “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.G.I.); (M.D.)
| | - Mihai Danciu
- Department of Morpho-Functional Sciences I (Morphopathology), “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.G.I.); (M.D.)
| | - Iustina Silivestru-Crețu
- Department of Morpho-Functional Sciences II (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (I.S.-C.); (F.A.)
| | - Fawzy Akad
- Department of Morpho-Functional Sciences II (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (I.S.-C.); (F.A.)
- Department of Morpho-Functional Sciences I (Anatomy), “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
| | - Andrei Nicolae Avadanei
- Department of Vascular Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (S.N.P.); (A.N.A.); (R.F.P.)
| | - Laura Condur
- Department of Family Medicine, Faculty of Medicine, Ovidius University, 124, Bd. Mamaia, 900527 Constanta, Romania;
| | - Radu Florin Popa
- Department of Vascular Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (S.N.P.); (A.N.A.); (R.F.P.)
| | - Veronica Mocanu
- Department of Morpho-Functional Sciences II (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (I.S.-C.); (F.A.)
| |
Collapse
|
2
|
Liu J, Li N, Wei C, Han F, Deng M, Ma J, Zou X, Zhou Y, Yang R, Yuan H. GHS-R1a deficiency protects against lipopolysaccharide-induced spatial memory impairment in mice. Biochem Biophys Res Commun 2024; 727:150270. [PMID: 38917617 DOI: 10.1016/j.bbrc.2024.150270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Neuroinflammation has been implicated in cognitive deficits of neurological and neurodegenerative diseases. There is abundant evidence that the application of ghrelin, an orexigenic hormone regulating appetite and energy balance, abrogates neuroinflammation and rescues associated memory impairment. However, the underlying mechanism is uncertain. In this study, we find that both intraperitoneal (i.p.) and intracerebroventricular (i.c.v.) administration of lipopolysaccharide (LPS) impairs spatial memory in mice. LPS treatment causes neuroinflammation and microglial activation in the hippocampus. Ghsr1a deletion suppresses LPS-induced microglial activation and neuroinflammation, and rescued LPS-induced memory impairment. Our findings thus suggest that GHS-R1a signaling may promote microglial immunoactivation and contribute to LPS-induced neuroinflammation. GHS-R1a may be a new therapeutic target for cognitive dysfunction associated with inflammatory conditions.
Collapse
Affiliation(s)
- Junru Liu
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao, Shandong 266042, China; Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Na Li
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China; Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, 266555, China
| | - Chuang Wei
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fubing Han
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China; Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Mingru Deng
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jialin Ma
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xueying Zou
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yu Zhou
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China; Affiliated Qingdao Third People's Hospital, Department of Otorhinolaryngology Head and Neck, Qingdao University, Qingdao, 266021, China.
| | - Rong Yang
- Affiliated Qingdao Third People's Hospital, Department of Otorhinolaryngology Head and Neck, Qingdao University, Qingdao, 266021, China.
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao, Shandong 266042, China; Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China.
| |
Collapse
|
3
|
Inomata R, Tsubouchi H, Takao T, Kurokawa M, Yanagi S, Sakai K, Miyazaki T. Resolvin D4 mitigates lipopolysaccharide-induced lung injury in mice. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102652. [PMID: 39368237 DOI: 10.1016/j.plefa.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition involving severe lung inflammation. The excessive oxidative stress and persistent inflammation that occur in ARDS lead to decreased epithelial integrity and hypoxemia due to pulmonary edema via increased vascular permeability. Resolvin D4 (RvD4) is one of the lipid mediators that is biosynthesized from omega-3 polyunsaturated fatty acids. It plays a role in the resolution of inflammation and reduces oxidative stress and cell death. We investigated the therapeutic potential of the administration of RvD4 in a murine model of lipopolysaccharide (LPS)-induced ARDS. Concurrent with the intratracheal administration of LPS, RvD4 or saline was administered to mice via the caudal vein every 12 h. This treatment with RvD4 alleviated the LPS-induced infiltration of inflammatory cells in lungs, inhibited increased pulmonary vascular permeability, decreased the levels of IL-1β, IL-6, and TNF-α in bronchoalveolar lavage fluid (BALF), and suppressed the reduction of the expression levels of the tight junction protein, Zonula occludens-1 (Zo-1) and the NAD+-dependent deacetylase, Sirtuin-3 (Sirt3). In vitro experiments revealed that in LPS-stimulated BEAS-2B cells, treatment with RvD4 suppressed the increases in the expressions of pro-inflammatory cytokines and maintained the epithelial cell barrier function and cell viability. The silencing of SIRT3 abolished both the anti-inflammatory effect and the retention of cell integrity in BEAS-2B cells. Together these results indicate that treatment with RvD4 can (i) protect against LPS-induced lung injury by inhibiting inflammation, and (ii) maintain epithelial barrier function via a reduction in the downregulation of SIRT3.
Collapse
Affiliation(s)
- Rika Inomata
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hironobu Tsubouchi
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Mone Kurokawa
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Shigehisa Yanagi
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, 889-1692, Japan
| | - Katsuya Sakai
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, 889-1692, Japan
| | - Taiga Miyazaki
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
4
|
Ma Y, Zhang H, Guo W, Yu L. Potential role of ghrelin in the regulation of inflammation. FASEB J 2022; 36:e22508. [PMID: 35983825 DOI: 10.1096/fj.202200634r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Several diseases are caused or progress due to inflammation. In the past few years, accumulating evidence suggests that ghrelin, a gastric hormone of 28-amino acid residue length, exerts protective effects against inflammation by modulating the related pathways. This review focuses on ghrelin's anti-inflammatory and potential therapeutic effects in neurological, cardiovascular, respiratory, hepatic, gastrointestinal, and kidney disorders. Ghrelin significantly alleviates excessive inflammation and reduces damage to different target organs mainly by reducing the secretion of inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and inhibiting the nuclear factor kappa-B (NF-κB) and NLRP3 inflammasome signaling pathways. Ghrelin also regulates inflammation and apoptosis through the p38 MAPK/c-Jun N-terminal kinase (JNK) signaling pathway; restores cerebral microvascular integrity, and attenuates vascular leakage. Ghrelin activates the phosphoInositide-3 kinase (PI3K)/protein kinase B (Akt) pathway and inhibits inflammatory responses in cardiovascular diseases and acute kidney injury. Some studies show that ghrelin exacerbates colonic and intestinal manifestations of colitis. Interestingly, some inflammatory states, such as non-alcoholic steatohepatitis, inflammatory bowel diseases, and chronic kidney disease, are often associated with high ghrelin levels. Thus, ghrelin may be a potential new therapeutic target for inflammation-related diseases.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haifeng Zhang
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|