1
|
Fu C, Tong W, Yu L, Miao Y, Wei Q, Yu Z, Chen B, Wei M. When will the immune-stimulating antibody conjugates (ISACs) be transferred from bench to bedside? Pharmacol Res 2024; 203:107160. [PMID: 38547937 DOI: 10.1016/j.phrs.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/30/2024]
Abstract
Immunostimulatory antibody conjugates (ISACs) as a promising new generation of targeted therapeutic antibody-drug conjugates (ADCs), that not only activate innate immunity but also stimulate adaptive immunity, providing a dual therapeutic effect to eliminate tumor cells. However, several ISACs are still in the early stages of clinical development or have already failed. Therefore, it is crucial to design ISACs more effectively to overcome their limitations, including high toxicity, strong immunogenicity, long development time, and poor pharmacokinetics. This review aims to summarize the composition and function of ISACs, incorporating current design considerations and ongoing clinical trials. Additionally, the review delves into the current issues with ISACs and potential solutions, such as adjusting the drug-antibody ratio (DAR) to improve the bioavailability of ISACs. By leveraging the affinity and bioavailability-enhancing properties of bispecific antibodies, the utility between antibodies and immunostimulatory agents can be balanced. Commonly used immunostimulatory agents may induce systemic immune reactions, and BTK (Bruton's tyrosine kinase) inhibitors can regulate immunogenicity. Finally, the concept of grafting ADC's therapeutic principles is simple, but the combination of payload, linker, and targeted functional molecules is not a simple permutation and combination problem. The development of conjugate drugs faces more complex pharmacological and toxicological issues. Standing on the shoulders of ADC, the development and application scenarios of ISAC are endowed with broader space.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Weiwei Tong
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110122, PR China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China.
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang 110122, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
2
|
Zheng P, Tan Y, Liu Q, Wu C, Kang J, Liang S, Zhu L, Yan K, Zeng L, Chen B. Deciphering the molecular and clinical characteristics of TREM2, HCST, and TYROBP in cancer immunity: A comprehensive pan-cancer study. Heliyon 2024; 10:e26993. [PMID: 38468942 PMCID: PMC10926084 DOI: 10.1016/j.heliyon.2024.e26993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Hematopoietic cell signal transducer (HCST) and tyrosine kinase-binding protein (TYROBP) are triggering receptors expressed on myeloid cells 2 (TREM2), which are pivotal in the immune response to disease. Despite growing evidence underscoring the significance of TREM2, HCST, and TYROBP in certain forms of tumorigenesis, a comprehensive pan-cancer analysis of these proteins is lacking. Methods Multiple databases were synthesized to investigate the relationship between TREM2, HCST, TYROBP, and various cancer types. These include prognosis, methylation, regulation by long non-coding RNAs and transcription factors, immune signatures, pathway activity, microsatellite instability (MSI), tumor mutational burden (TMB), single-cell transcriptome profiling, and drug sensitivity. Results TREM2, HCST, and TYROBP displayed extensive somatic changes across numerous tumors, and their mRNA expression and methylation levels influenced patient outcomes across multiple cancer types. long non-coding RNA (lncRNA) -messenger RNA (mRNA) and TF-mRNA regulatory networks involving TREM2, HCST, and TYROBP were identified, with lncRNA MEG3 and the transcription factor SIP1 emerging as potential key regulators. Further immune analyses indicated that TREM2, HCST, and TYROBP play critical roles in immune-related pathways and macrophage differentiation, and may be significantly associated with TGF-β and SMAD9. Furthermore, the expression of TREM2, HCST, and TYROBP correlated with the immunotherapy markers TMB and MSI, and influenced sensitivity to immune-targeted drugs, thereby indicating their potential as predictors of immunotherapy outcomes. Conclusion This study offers valuable insights into the roles of TREM2, HCST, and TYROBP in tumor immunotherapy, suggesting their potential as prognostic markers and therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Piao Zheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yejun Tan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Qing Liu
- The department of neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changwu Wu
- The department of neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Kang
- Department of rheumatology and immunology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuzhi Liang
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Kuipo Yan
- Department of cardiology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Baghery Saghchy Khorasani A, Yousefi AM, Bashash D. CAR NK cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges. Int Immunopharmacol 2022; 110:109041. [PMID: 35839565 DOI: 10.1016/j.intimp.2022.109041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/08/2023]
Abstract
Adoptive cell treatment (ACT) utilizing chimeric antigen receptors (CAR) diverts the specificity of safe cells against a target-specific antigen and portrays exceptional potential for cancer treatment. While CAR T cell treatment has risen as a breakthrough with unprecedented results within the therapeutic procedures of human malignancies, different deficiencies including challenging and costly generation processes, strict patient qualification criteria, and undesirable toxicity have ruined its application. Unlike T cells, the application of natural killer (NK) cells has attracted consideration as a reasonable alternative owing to the major histocompatibility complex (MHC)-independency, shorter life expectancy, the potential to create an off-the-shelf immune product, and potent antitumor properties. In this article, we provide an updated review of the differences between CAR T and CAR NK cells, current enhancements in CAR NK design, the available sources for collecting NK cells, and strategies for the transduction step of the CARs to NK cells. Furthermore, we focus on the published and ongoing preclinical and clinical studies of CAR NK treatment strategies both in hematologic malignancies and solid tumors. We also discuss limitations and plausible solutions to improve the perseverance, function, safety, and efficacy of CAR NK cells with a special focus on solid tumors.
Collapse
Affiliation(s)
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|