1
|
Jiang H, Zhou L, Zhang H, Yu Z. E2F expression profiling-based subtypes in head and neck squamous cell carcinoma: clinical relevance, prognostic implications, and personalized therapy. World J Surg Oncol 2025; 23:157. [PMID: 40275315 PMCID: PMC12023618 DOI: 10.1186/s12957-025-03808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous malignancy with poor prognosis. Dysregulation of E2F transcription factors (E2Fs), which control cell proliferation and apoptosis, is implicated in HNSCC pathogenesis. This study explores HNSCC molecular heterogeneity via E2Fs expression, identifies distinct subtypes, and develops a prognostic model that integrates gene expression, immune infiltration, and drug sensitivity. METHODS We analyzed the TCGA-HNSC dataset (n = 494) and classified samples based on the expression of eight E2Fs using ConsensusClusterPlus. The optimal number of clusters (k = 2) was determined with the getOptK() function, which assesses cluster stability via internal consistency metrics. Differentially expressed genes between subtypes were identified with limma, and functional annotation was performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. A prognostic model was constructed using LASSO regression on genes significant in univariate Cox analysis and validated in an independent GSE41613 dataset (n = 97). Immune cell infiltration was estimated using CIBERSORT, and drug sensitivity predicted via pRRophetic. Confounding factors such as HPV and smoking status were not included due to incomplete data. RESULTS Two distinct E2F-based subtypes emerged. Cluster 1, characterized by lower E2Fs expression, exhibited poorer overall survival (log-rank, p = 0.035) and was enriched in genes related to epidermal development, keratinocyte differentiation, and IL-17 signaling. In contrast, Cluster 2 showed higher E2Fs expression, better survival, and enrichment in genes associated with DNA replication and repair. Notably, high-risk patients demonstrated increased infiltration of M0 and M2 macrophages (p < 0.05), suggesting an immunosuppressive tumor microenvironment that adversely affects prognosis. Our seven-gene prognostic model (AREG, CXCL14, FAM83E, FDCSP, ARHGAP4, EPHX3, and SPINK6) exhibited robust performance with AUCs of 0.692, 0.673, and 0.679 for 1-, 3-, and 5-year survival, a C-index of 0.66, and good calibration. High-risk patients also showed greater sensitivity to targeted agents such as pazopanib and imatinib. CONCLUSIONS These findings reveal two distinct E2F-based molecular subtypes of HNSCC that differ in prognosis, functional pathways, immune infiltration, and drug sensitivity. The prognostic model offers valuable risk stratification and identifies potential biomarkers and therapeutic targets, warranting further experimental and clinical validation.
Collapse
Affiliation(s)
- Huanyu Jiang
- School of Medicine, Southeast University, 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Lijuan Zhou
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Haidong Zhang
- School of Medicine, Southeast University, 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Zhenkun Yu
- School of Medicine, Southeast University, 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China.
| |
Collapse
|
2
|
Liu P, Sun Z. Chemokines and their receptors in the esophageal carcinoma tumor microenvironment: key factors for metastasis and progression. Front Oncol 2025; 15:1523751. [PMID: 40134607 PMCID: PMC11933060 DOI: 10.3389/fonc.2025.1523751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Esophageal carcinoma (ESCA) is a highly malignant tumor with the highest incidence in Eastern Asia. Although treatment modalities for ESCA have advanced in recent years, the overall prognosis remains poor, as most patients are diagnosed at an advanced stage of the disease. There is an urgent need to promote early screening for ESCA to increase survival rates and improve patient outcomes. The development of ESCA is closely linked to the complex tumor microenvironment (TME), where chemokines and their receptors play pivotal roles. Chemokines are a class of small-molecule, secreted proteins and constitute the largest family of cytokines. They not only directly regulate tumor growth and proliferation but also influence cell migration and localization through specific receptor interactions. Consequently, chemokines and their receptors affect tumor invasion and metastatic spread. Furthermore, chemokines regulate immune cells, including macrophages and regulatory T cells, within the TME. The recruitment of these immune cells further leads to immunosuppression, creating favorable conditions for tumor growth and metastasis. This review examines the impact of ESCA-associated chemokines and their receptors on ESCA, emphasizing their critical involvement in the ESCA TME.
Collapse
Affiliation(s)
| | - Zhiqiang Sun
- Department of Radiation Oncology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
3
|
Guan M, Liu S, Yang YG, Song Y, Zhang Y, Sun T. Chemokine systems in oncology: From microenvironment modulation to nanocarrier innovations. Int J Biol Macromol 2024; 268:131679. [PMID: 38641274 DOI: 10.1016/j.ijbiomac.2024.131679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Over the past few decades, significant strides have been made in understanding the pivotal roles that chemokine networks play in tumor biology. These networks, comprising chemokines and their receptors, wield substantial influence over cancer immune regulation and therapeutic outcomes. As a result, targeting these chemokine systems has emerged as a promising avenue for cancer immunotherapy. However, therapies targeting chemokines face significant challenges in solid tumor treatment, due to the complex and fragile of the chemokine networks. A nuanced comprehension of the complicacy and functions of chemokine networks, and their impact on the tumor microenvironment, is essential for optimizing their therapeutic utility in oncology. This review elucidates the ways in which chemokine networks interact with cancer immunity and tumorigenesis. We particularly elaborate on recent innovations in manipulating these networks for cancer treatment. The review also highlights future challenges and explores potential biomaterial strategies for clinical applications.
Collapse
Affiliation(s)
- Meng Guan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
| | - Yanqiu Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, Jilin 130021, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
4
|
Huang CG, Liu Q, Zheng ST, Liu T, Tan YY, Peng TY, Chen J, Lu XM. Chemokines and Their Receptors: Predictors of Therapeutic Potential in Tumor Microenvironment on Esophageal Cancer. Dig Dis Sci 2024; 69:1562-1570. [PMID: 38580886 PMCID: PMC11098888 DOI: 10.1007/s10620-024-08392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Esophageal carcinoma (ESCA) is an aggressive solid tumor. The 5-year survival rate for patients with ESCA is estimated to be less than 20%, mainly due to tumor invasion and metastasis. Therefore, it is urgent to improve early diagnostic tools and effective treatments for ESCA patients. Tumor microenvironment (TME) enhances the ability of tumor cells to proliferate, migrate, and escape from the immune system, thus promoting the occurrence and development of tumor. TME contains chemokines. Chemokines consist of four major families, which are mainly composed of CC and CXC families. The main purpose of this review is to understand the CC and CXC chemokines and their receptors in ESCA, to improve the understanding of tumorigenesis of ESCA and determine new biomarkers for the diagnosis and prognosis of ESCA. We reviewed the literature on CC and CXC chemokines and their receptors in ESCA identified by PubMed database. This article introduces the general structures and functions of CC, CXC chemokines and their receptors in TME, as well as their roles in the progress of ESCA. Chemokines are involved in the development of ESCA, such as cancer cell invasion, metastasis, angiogenesis, and radioresistance, and are key determinants of disease progression, which have a great impact on patient prognosis and treatment response. In addition, a full understanding of their mechanism of action is essential to further verify that these chemokines and their receptors may serve as biomarkers or therapeutic targets of ESCA.
Collapse
Affiliation(s)
- Cong-Gai Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shu-Tao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tao Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yi-Yi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tian-Yuan Peng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiao Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Mei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
5
|
Qin Y, Xu H, Xi Y, Feng L, Chen J, Xu B, Dong X, Li Y, Jiang Z, Lou J. Effects of the SEMA4B gene on hexavalent chromium [Cr(VI)]-induced malignant transformation of human bronchial epithelial cells. Toxicol Res (Camb) 2024; 13:tfae030. [PMID: 38464415 PMCID: PMC10919774 DOI: 10.1093/toxres/tfae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 03/12/2024] Open
Abstract
Our previous study identified the potential of SEMA4B methylation level as a biomarker for hexavalent chromium [Cr(VI)] exposure. This study aimed to investigate the role of the SEMA4B gene in Cr(VI)-mediated malignant transformation of human bronchial epithelial (BEAS-2B) cells. In our population survey of workers, the geometric mean [95% confidence intervals (CIs)] of Cr in blood was 3.80 (0.42, 26.56) μg/L. Following treatment with various doses of Cr(VI), it was found that 0.5 μM had negligible effects on the cell viability of BEAS-2B cells. The expression of SEMA4B was observed to decrease in BEAS-2B cells after 7 days of treatment with 0.5 μM Cr(VI), and this downregulation continued with increasing passages of Cr(VI) treatment. Chronic exposure to 0.5 μM Cr(VI) enhanced the anchorage-independent growth ability of BEAS-2B cells. Furthermore, the use of a methylation inhibitor suppressed the Cr(VI)-mediated anchorage-independent growth in BEAS-2B cells. Considering that Cr levels exceeding 0.5 μM can be found in human blood due to occupational exposure, the results suggested a potential carcinogenic risk associated with occupational Cr(VI) exposure through the promotion of malignant transformation. The in vitro study further demonstrated that Cr(VI) exposure might inhibit the expression of the SEMA4B gene to promote the malignant transformation of BEAS-2B cells.
Collapse
Affiliation(s)
- Yao Qin
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Huadong Xu
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Yongyong Xi
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Junfei Chen
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Biao Xu
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Xiaowen Dong
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Yongxin Li
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Zhaoqiang Jiang
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, and the First Affiliated Hospital, Huzhou University, No. 158, Square Back Road, Wuxing District, Huzhou, Zhejiang 313000, China
| |
Collapse
|
6
|
Giacobbi NS, Mullapudi S, Nabors H, Pyeon D. The Chemokine CXCL14 as a Potential Immunotherapeutic Agent for Cancer Therapy. Viruses 2024; 16:302. [PMID: 38400076 PMCID: PMC10892169 DOI: 10.3390/v16020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
There is great enthusiasm toward the development of novel immunotherapies for the treatment of cancer, and given their roles in immune system regulation, chemokines stand out as promising candidates for use in new cancer therapies. Many previous studies have shown how chemokine signaling pathways could be targeted to halt cancer progression. We and others have revealed that the chemokine CXCL14 promotes antitumor immune responses, suggesting that CXCL14 may be effective for cancer immunotherapy. However, it is still unknown what mechanism governs CXCL14-mediated antitumor activity, how to deliver CXCL14, what dose to apply, and what combinations with existing therapy may boost antitumor immune responses in cancer patients. Here, we provide updates on the role of CXCL14 in cancer progression and discuss the potential development and application of CXCL14 as an immunotherapeutic agent.
Collapse
Affiliation(s)
| | | | | | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (N.S.G.); (S.M.); (H.N.)
| |
Collapse
|
7
|
Li B, Li J, Wang L, Wei Y, Luo X, Guan J, Zhang X. Yak-Derived CXCL14 Activates the Pro-Inflammatory Response of Macrophages and Inhibits the Proliferation and Migration of HepG2. Animals (Basel) 2023; 13:3036. [PMID: 37835641 PMCID: PMC10571970 DOI: 10.3390/ani13193036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
CXCL14 (C-X-C motif chemokine ligand 14) is an important chemokine involved in infection and immunity and plays an important role in a variety of immune-related diseases. The 446 bp cDNA sequence of the CXCL14 gene in yaks was obtained. Additionally, the prokaryotic expression vector of the CXCL14 protein with a molecular weight of 27 kDa was successfully constructed and expressed. The proliferation activities and migration abilities of spleen macrophages were significantly inhibited after treatment with the CXCL14 protein at different concentrations (1, 10 and 20 μg/mL) (p < 0.05). Furthermore, the expressions of pro-inflammatory cytokines interleukin 1 beta (IL-1β), interleukin 6 (IL6), interleukin 8 (IL8) and interferon-α (TNF-α) were significantly increased (p < 0.05), but the expression of anti-inflammatory factor interleukin 10 (IL10) was significantly decreased (p < 0.05). The contents of inflammatory factors in the supernatant of cells were detected using ELISA, and it was also found that the contents of TNF-α, IL6 and cytochrome c oxidase subunit II (COX2) were significantly increased under different CXCL14 protein concentrations (p < 0.05). Finally, the exogenous addition of CXCL14 inhibited the activity, clonal formation and migration of hepatoma cells (HepG2). Additionally, after HepG2 cells were treated with 20 μg/mL CXCL14 protein for 12 h, 24 h and 36 h, the expression levels of BCL2 homologous antagonist/killer (BAK) and the BCL2-associated X apoptosis regulator (BAX) were increased to varying degrees, while the expression levels of hypoxia-inducible factor 1 subunit alpha (HIF1A), the mechanistic target of rapamycin kinase (mTOR) and cyclin-dependent kinase 1 (CDK1) genes decreased compared to the control group. In conclusion, the CXCL14 protein can inhibit the proliferation and migration of HepG2 cells by inducing the expression of macrophage pro-inflammatory factors and activating apoptosis-related genes to exert innate immunity. These results are helpful to further study the function of the CXCL14 protein and provide research data for the innate immune mechanism of yaks under harsh plateau environments.
Collapse
Affiliation(s)
- Biao Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.L.); (J.L.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Juan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.L.); (J.L.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.L.); (J.L.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Yong Wei
- Sichuan Animal Sciences Academy, Chengdu 610041, China; (J.G.); (X.Z.)
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China;
| | - Jiuqiang Guan
- Sichuan Animal Sciences Academy, Chengdu 610041, China; (J.G.); (X.Z.)
| | - Xiangfei Zhang
- Sichuan Animal Sciences Academy, Chengdu 610041, China; (J.G.); (X.Z.)
| |
Collapse
|