1
|
Hou M, Liu S. Recent Progress of pH-Responsive Peptides, Polypeptides, and Their Supramolecular Assemblies for Biomedical Applications. Biomacromolecules 2024; 25:5402-5416. [PMID: 39105715 DOI: 10.1021/acs.biomac.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Peptides and polypeptides feature a variety of active functional groups on their side chains (including carboxylic acid, hydroxyl, amino, and thiol groups), enabling diverse chemical modifications. This versatility makes them highly valuable in stimuli-responsive systems. Notably, pH-responsive peptides and polypeptides, due to their ability to respond to pH changes, hold significant promise for applications in cellular pathology and tumor targeting. Extensive researches have highlighted the potentials of low pH insertion peptides (pHLIPs), peptide-drug conjugates (PDCs), and antibody-drug conjugates (ADCs) in biomedicine. Peptide self-assemblies, with their structural stability, ease of regulation, excellent biocompatibility, and biodegradability, offer immense potentials in the development of novel materials and biomedical applications. We also explore specific examples of their applications in drug delivery, tumor targeting, and tissue engineering, while discussing future challenges and potential advancements in the field of pH-responsive self-assembling peptide-based biomaterials.
Collapse
Affiliation(s)
- Mingxuan Hou
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jin-zhai Road, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jin-zhai Road, Hefei, Anhui Province 230026, China
| |
Collapse
|
2
|
Reshetnyak YK, Andreev OA, Engelman DM. Aiming the magic bullet: targeted delivery of imaging and therapeutic agents to solid tumors by pHLIP peptides. Front Pharmacol 2024; 15:1355893. [PMID: 38545547 PMCID: PMC10965573 DOI: 10.3389/fphar.2024.1355893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 11/11/2024] Open
Abstract
The family of pH (Low) Insertion Peptides (pHLIP) comprises a tumor-agnostic technology that uses the low pH (or high acidity) at the surfaces of cells within the tumor microenvironment (TME) as a targeted biomarker. pHLIPs can be used for extracellular and intracellular delivery of a variety of imaging and therapeutic payloads. Unlike therapeutic delivery targeted to specific receptors on the surfaces of particular cells, pHLIP targets cancer, stromal and some immune cells all at once. Since the TME exhibits complex cellular crosstalk interactions, simultaneous targeting and delivery to different cell types leads to a significant synergistic effect for many agents. pHLIPs can also be positioned on the surfaces of various nanoparticles (NPs) for the targeted intracellular delivery of encapsulated payloads. The pHLIP technology is currently advancing in pre-clinical and clinical applications for tumor imaging and treatment.
Collapse
Affiliation(s)
- Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Donald M. Engelman
- Molecular Biophysics and Biochemistry Department, Yale, New Haven, CT, United States
| |
Collapse
|
3
|
Ding GB, Cao H, Zhu C, Chen F, Ye J, Li BC, Yang P, Stauber RH, Qiao M, Li Z. Biosynthesized tumor acidity and MMP dual-responsive plant toxin gelonin for robust cancer therapy. Biomater Sci 2024; 12:346-360. [PMID: 38099814 DOI: 10.1039/d3bm01779f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Among all kinds of anticancer agents, small molecule drugs produce an unsatisfactory therapeutic effect due to the lack of selectivity, notorious drug resistance and side effects. Therefore, researchers have begun to pay extensive attention to macromolecular drugs with high efficacy and specificity. As a plant toxin, gelonin exerts potent antitumor activity via inhibiting intracellular protein synthesis. However, gelonin lacks a translocation domain, and thus its poor cellular uptake leads to low outcomes of antitumor response. Here, tumor acidity and matrix metalloproteinase (MMP) dual-responsive functional gelonin (Trx-PVGLIG-pHLIP-gelonin, TPpG), composed of a thioredoxin (Trx) tag, a pH low insertion peptide (pHLIP), an MMP-responsive motif PVGLIG hexapeptide and gelonin, was innovatively proposed and biologically synthesized by a gene recombination technique. TPpG exhibited good thermal and serum stability, showed MMP responsiveness and could enter tumor cells under weakly acidic conditions, especially for MMP2-overexpressing HT1080 cells. Compared to low MMP2-expressing MCF-7 cells, TPpG displayed enhanced in vitro antitumor efficacy to HT1080 cells at pH 6.5 as determined by different methods. Likewise, TPpG was much more effective in triggering cell apoptosis and inhibiting protein synthesis in HT1080 cells than in MCF-7 cells. Intriguingly, with enhanced stability and pH/MMP dual responsiveness, TPpG notably inhibited subcutaneous HT1080 xenograft growth in mice and no noticeable off-target side effect was observed. This ingeniously designed strategy aims at providing new perspectives for the development of a smart platform that can intelligently respond to a tumor microenvironment for efficient protein delivery.
Collapse
Affiliation(s)
- Guo-Bin Ding
- Institutes of Biomedical Sciences/School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Huiyan Cao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Chenchen Zhu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Fangyuan Chen
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Jiaqi Ye
- Institutes of Biomedical Sciences/School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Bin-Chun Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Roland H Stauber
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany
| | - Mingqiang Qiao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
4
|
Frolova AY, Pakhomov AA, Kakuev DL, Sungurova AS, Dremina AA, Mamontova ED, Deyev SM, Martynov VI. Hybrid protein-peptide system for the selective pH-dependent binding and photodynamic ablation of cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 249:112803. [PMID: 37924677 DOI: 10.1016/j.jphotobiol.2023.112803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Creating new tools for the early diagnosis and treatment of cancer is one of the most important and intensively developing areas of modern medicine. Currently, photodynamic cancer therapy (PDT) is attracting increasing attention as a unique modality of minimally invasive treatment and due to the absence of acquired resistance. However, PDT is associated with undesirable activities, such as non-specific photodynamic effects of sunlight on healthy tissues. Therefore, an important fundamental task is the development of improved PDT agents that selectively act on the affected areas. Here, we report the development of a hybrid protein-peptide system for the selective pH-dependent binding and subsequent photodynamic cancer cells ablation. It is known that a distinctive feature of cancer cells is a decreased pH level in the extracellular space. In this study we exploited a peptide fragment (pHLIP) as a targeting module, which spontaneously binds and embeds into the cell membrane when pH decreases below neutral. A mutant of miniSOG protein fused to pHLIP was used as a photosensitizing constituent. We demonstrate that this protein-peptide photosensitizing system selectively binds to HeLa cells at pH below 6.8 and kills them when exposed to light. These findings demonstrate the feasibility of using genetically encoded MiniSOG fusions with pHLIP for the targeted delivery of PSs to cancer cells and subsequent highly precise photodynamic therapy.
Collapse
Affiliation(s)
- Anastasiya Yu Frolova
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Alexey A Pakhomov
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation.
| | - Dmitry L Kakuev
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Anna S Sungurova
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Anastasiya A Dremina
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Elizaveta D Mamontova
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Sergey M Deyev
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Vladimir I Martynov
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| |
Collapse
|