1
|
Sinyak DS, Amakhin DV, Soboleva EB, Gryaznova MO, Zaitsev AV. Flufenamic acid abolishes epileptiform activity in the entorhinal cortex slices by reducing the temporal summation of glutamatergic responses. Biochem Biophys Res Commun 2024; 733:150666. [PMID: 39244848 DOI: 10.1016/j.bbrc.2024.150666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Flufenamic acid (FFA) is an anti-inflammatory drug that affects multiple targets and is a widely used research tool in ion channel studies. This pharmacological compound has a low level of selectivity for the transient receptor potential (TRP) channel superfamily, blocking calcium-activated nonselective cation current (ICAN) as well as afterdepolarizations (ADP) induced by it. A number of studies have demonstrated that FFA exerts an anti-epileptic effect in vitro, although the precise mechanism of this effect is not yet identified. The present study used whole-cell patch-clamp recordings and demonstrated that FFA (25 μM) can abolish the generation of seizure-like events (SLE) in entorhinal cortex slices perfused with a 4-aminopyridine-containing solution, depending on the time of application. FFA decreased the temporal summation of synaptic potentials at the onset of SLEs. However, as the epileptiform activity evolved and the SLE onset phase became more abrupt, the blocking effect of FFA diminished. FFA effectively abolished TRP channel-mediated slow ADPs, exerted a weak blockade and slowed the kinetics of GABAa receptor-mediated currents, and did not affect NMDA receptor-mediated evoked currents induced by extracellular stimulation. Although FFA did not directly inhibit NMDA receptor-mediated evoked currents, it decreased the summation of NMDA receptor-mediated potentials in a manner comparable to its effect on the initiation phase of SLE. This suggests that ICAN blockade may be responsible for this effect. Furthermore, our results showed that the selective blocker of melastatin TRP channels (TRPM4) 9-phenanthrol effectively abolished epileptiform activity in a manner analogous to FFA. In contrast, ML-204, the blocker of canonical TRP channels (TRPC), had no discernible effect on this phenomenon. In conclusion, the study demonstrate that FFA abolishes epileptiform activity in the entorhinal cortex by blocking TRPM4 channels and, consequently, decreasing the effectiveness of temporal summation of glutamatergic potentials.
Collapse
Affiliation(s)
- Denis S Sinyak
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, pr. Torez 44, 194223, Saint Petersburg, Russia
| | - Dmitry V Amakhin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, pr. Torez 44, 194223, Saint Petersburg, Russia
| | - Elena B Soboleva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, pr. Torez 44, 194223, Saint Petersburg, Russia
| | - Marusya O Gryaznova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, pr. Torez 44, 194223, Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, pr. Torez 44, 194223, Saint Petersburg, Russia.
| |
Collapse
|
2
|
Chizhov AV, Tiselko VS, Postnikova TY, Zaitsev AV. Phase-Dependent Response to Electrical Stimulation of Cortical Networks during Recurrent Epileptiform Short Discharge Generation In Vitro. Int J Mol Sci 2024; 25:8287. [PMID: 39125856 PMCID: PMC11313217 DOI: 10.3390/ijms25158287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The closed-loop control of pathological brain activity is a challenging task. In this study, we investigated the sensitivity of continuous epileptiform short discharge generation to electrical stimulation applied at different phases between the discharges using an in vitro 4-AP-based model of epilepsy in rat hippocampal slices. As a measure of stimulation effectiveness, we introduced a sensitivity function, which we then measured in experiments and analyzed with different biophysical and abstract mathematical models, namely, (i) the two-order subsystem of our previous Epileptor-2 model, describing short discharge generation governed by synaptic resource dynamics; (ii) a similar model governed by shunting conductance dynamics (Epileptor-2B); (iii) the stochastic leaky integrate-and-fire (LIF)-like model applied for the network; (iv) the LIF model with potassium M-channels (LIF+KM), belonging to Class II of excitability; and (v) the Epileptor-2B model with after-spike depolarization. A semi-analytic method was proposed for calculating the interspike interval (ISI) distribution and the sensitivity function in LIF and LIF+KM models, which provided parametric analysis. Sensitivity was found to increase with phase for all models except the last one. The Epileptor-2B model is favored over other models for subthreshold oscillations in the presence of large noise, based on the comparison of ISI statistics and sensitivity functions with experimental data. This study also emphasizes the stochastic nature of epileptiform discharge generation and the greater effectiveness of closed-loop stimulation in later phases of ISIs.
Collapse
Affiliation(s)
- Anton V. Chizhov
- Centre Inria d’Universite Cote d’Azur, 06902 Valbonne, France
- Computational Physics Laboratory, Ioffe Institute, Saint Petersburg 194021, Russia
| | - Vasilii S. Tiselko
- Laboratory of Complex Networks, Center for Neurophysics and Neuromorphic Technologies, Moscow 121205, Russia;
| | - Tatyana Yu. Postnikova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (T.Y.P.); (A.V.Z.)
| | - Aleksey V. Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (T.Y.P.); (A.V.Z.)
| |
Collapse
|
3
|
Trofimova AM, Amakhin DV, Postnikova TY, Tiselko VS, Alekseev A, Podoliak E, Gordeliy VI, Chizhov AV, Zaitsev AV. Light-Driven Sodium Pump as a Potential Tool for the Control of Seizures in Epilepsy. Mol Neurobiol 2024; 61:4691-4704. [PMID: 38114761 DOI: 10.1007/s12035-023-03865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The marine flavobacterium Krokinobactereikastus light-driven sodium pump (KR2) generates an outward sodium ion current under 530 nm light stimulation, representing a promising optogenetic tool for seizure control. However, the specifics of KR2 application to suppress epileptic activity have not yet been addressed. In the present study, we investigated the possibility of KR2 photostimulation to suppress epileptiform activity in mouse brain slices using the 4-aminopyrindine (4-AP) model. We injected the adeno-associated viral vector (AAV-PHP.eB-hSyn-KR2-YFP) containing the KR2 sodium pump gene enhanced with appropriate trafficking tags. KR2 expression was observed in the lateral entorhinal cortex and CA1 hippocampus. Using whole-cell patch clamp in mouse brain slices, we show that KR2, when stimulated with LED light, induces a substantial hyperpolarization of entorhinal neurons. However, continuous photostimulation of KR2 does not interrupt ictal discharges in mouse entorhinal cortex slices induced by a solution containing 4-AP. KR2-induced hyperpolarization strongly activates neuronal HCN channels. Consequently, turning off photostimulation resulted in HCN channel-mediated rebound depolarization accompanied by a transient increase in spontaneous network activity. Using low-frequency pulsed photostimulation, we induced the generation of short HCN channel-mediated discharges that occurred in response to the light stimulus being turned off; these discharges reliably interrupt ictal activity. Thus, low-frequency pulsed photostimulation of KR2 can be considered as a potential tool for controlling epileptic seizures.
Collapse
Affiliation(s)
- Alina M Trofimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Dmitry V Amakhin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Tatyana Y Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Vasilii S Tiselko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Elizaveta Podoliak
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Anton V Chizhov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
- MathNeuro Team, Inria Centre at Université Côte d'Azur, Sophia Antipolis, France
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia.
| |
Collapse
|
4
|
Su Y, Cao N, Zhang D, Wang M. The effect of ferroptosis-related mitochondrial dysfunction in the development of temporal lobe epilepsy. Ageing Res Rev 2024; 96:102248. [PMID: 38408490 DOI: 10.1016/j.arr.2024.102248] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epileptic syndrome. It has been established that due to its complex pathogenesis, a considerable proportion of TLE patients often progress to drug-resistant epilepsy. Ferroptosis has emerged as an important neuronal death mechanism in TLE, which is primarily influenced by lipid accumulation and oxidative stress. In previous studies of ferroptosis, more attention has been focused on the impact of changes in the levels of proteins related to the redox equilibrium and signaling pathways on epileptic seizures. However, it is worth noting that the oxidative-reduction changes in different organelles may have different pathophysiological significance in the process of ferroptosis-related diseases. Mitochondria, as a key organelle involved in ferroptosis, its structural damage and functional impairment can lead to energy metabolism disorders and disruption of the excitatory inhibitory balance, significantly increasing the susceptibility to epileptic seizures. Therefore, secondary mitochondrial dysfunction in the process of ferroptosis could play a crucial role in TLE pathogenesis. This review focuses on ferroptosis and mitochondria, discussing the pathogenic role of ferroptosis-related mitochondrial dysfunction in TLE, thus aiming to provide novel insights and potential implications of ferroptosis-related secondary mitochondrial dysfunction in epileptic seizures and to offer new insights for the precise exploration of ferroptosis-related therapeutic targets for TLE patients.
Collapse
Affiliation(s)
- Yang Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China
| | - Ningrui Cao
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China; Department of Neurology, West China Hospital of Sichuan University, China.
| |
Collapse
|
5
|
Nikitin ES, Postnikova TY, Proskurina EY, Borodinova AA, Ivanova V, Roshchin MV, Smirnova MP, Kelmanson I, Belousov VV, Balaban PM, Zaitsev AV. Overexpression of KCNN4 channels in principal neurons produces an anti-seizure effect without reducing their coding ability. Gene Ther 2024; 31:144-153. [PMID: 37968509 DOI: 10.1038/s41434-023-00427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
Gene therapy offers a potential alternative to the surgical treatment of epilepsy, which affects millions of people and is pharmacoresistant in ~30% of cases. Aimed at reducing the excitability of principal neurons, the engineered expression of K+ channels has been proposed as a treatment due to the outstanding ability of K+ channels to hyperpolarize neurons. However, the effects of K+ channel overexpression on cell physiology remain to be investigated. Here we report an adeno-associated virus (AAV) vector designed to reduce epileptiform activity specifically in excitatory pyramidal neurons by expressing the human Ca2+-gated K+ channel KCNN4 (KCa3.1). Electrophysiological and pharmacological experiments in acute brain slices showed that KCNN4-transduced cells exhibited a Ca2+-dependent slow afterhyperpolarization that significantly decreased the ability of KCNN4-positive neurons to generate high-frequency spike trains without affecting their lower-frequency coding ability and action potential shapes. Antiepileptic activity tests showed potent suppression of pharmacologically induced seizures in vitro at both single cell and local field potential levels with decreased spiking during ictal discharges. Taken together, our findings strongly suggest that the AAV-based expression of the KCNN4 channel in excitatory neurons is a promising therapeutic intervention as gene therapy for epilepsy.
Collapse
Affiliation(s)
- Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia.
| | - Tatiana Y Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, Saint Petersburg, Russia
| | - Elena Y Proskurina
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, Saint Petersburg, Russia
| | | | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Matvey V Roshchin
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Maria P Smirnova
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Ilya Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025, Moscow, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, Saint Petersburg, Russia.
| |
Collapse
|