1
|
Hu X, Cai W, Zhang L, Zhu Z, Okita TW, Tian L. Molecular Dialog of Ralstonia solanacearum and Plant Hosts with Highlights on Type III Effectors. Int J Mol Sci 2025; 26:3686. [PMID: 40332227 PMCID: PMC12027289 DOI: 10.3390/ijms26083686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Ralstonia solanacearum is a highly destructive soil-borne bacterium that causes bacterial wilt disease in more than 310 plant species worldwide. The pathogenicity of the bacteria is closely associated with type III effectors (T3Es), a class of virulence factors that are delivered to host plant cells by the type III secretion system. In spite of the complex evolutionary history and genetic diversity of the R. solanacearum species complex (RSSC), more than 100 different T3Es have been identified from the genomes of various strains. Based on the available functional studies, certain T3Es interact with host plant proteins and suppress host cell immunity, whereas other T3Es are recognized by the host plant to trigger specific resistance mechanisms. This review summarizes the mechanisms by which T3Es interfere with plant immune responses and the activation of the plant defense system upon T3E recognition. This in-depth review of the molecular interactions between R. solanacearum and its host plants offers insights into the complexity of plant-pathogen interactions and provides a scientific rationale and theoretical support for the future breeding of resistant crops.
Collapse
Affiliation(s)
- Xinyu Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Chen Y, Cheng L, Guan X, Liang Y, Xue Y, Zhao W, Zhang Z, Chang X, Liang L, Gao G. StCPP3 interacts with type III secretion protein HrpB7 and negatively regulates plant resistance against Ralstonia solanacearum. Biochem Biophys Res Commun 2025; 742:151105. [PMID: 39626371 DOI: 10.1016/j.bbrc.2024.151105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Cysteine-rich polycomb-like proteins (CPP) are crucial in regulating plant stress responses while the underlying functions of CPP involving plant- Ralstonia solanacaearum interaction remain unknown. Here, we showed the expression patterns of a potato CPP gene (StCPP3) under phytohormone treatments, biotic and abiotic stressed and its role in resistance against of R. solanacaearum infection by loss- and gain-of-function approaches. StCPP3 expression were up-regulated with methyl jasmonate (MeJA) and abscisic acid (ABA) while down-regulated under salicylic acid (SA), brassinosteroids (BR), high salt or low temperature treatment. Silencing the homolog gene (NbCPP3) in Nicotiana benthamiana enhanced resistance to R. solanacaearum. Over-expressing StCPP3 in Arabidopsis increased susceptibility and decreased activity of some defense-related enzymes, suggesting its role in suppressing hypersensitive cell death and reducing PR1 gene expression. In addition, we found that StCPP3 could interact with Type III secretion protein HrpB7 from R. solanacaearum. These results provide new insight into the mechanism of CPP's involvement in plant-pathogen interactions.
Collapse
Affiliation(s)
- Yiqian Chen
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Lixiang Cheng
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Xiaoying Guan
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Yi Liang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Yanjiao Xue
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Wenyan Zhao
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Ziyue Zhang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Xiaoyan Chang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Liqin Liang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Gang Gao
- College of Life Science, Shanxi Normal University, Taiyuan, China.
| |
Collapse
|
3
|
Cao P, Shi H, Zhang S, Chen J, Wang R, Liu P, Zhu Y, An Y, Zhang M. A robust high-throughput functional screening assay for plant pathogen effectors using the TMV-GFP vector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:617-631. [PMID: 38647454 DOI: 10.1111/tpj.16774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Uncovering the function of phytopathogen effectors is crucial for understanding mechanisms of pathogen pathogenicity and for improving our ability to protect plants from diseases. An increasing number of effectors have been predicted in various plant pathogens. Functional characterization of these effectors has become a major focus in the study of plant-pathogen interactions. In this study, we designed a novel screening system that combines the TMV (tobacco mosaic virus)-GFP vector and Agrobacterium-mediated transient expression in the model plant Nicotiana benthamiana. This system enables the rapid identification of effectors that interfere with plant immunity. The biological function of these effectors can be easily evaluated by observing the GFP fluorescence signal using a UV lamp within just a few days. To evaluate the TMV-GFP system, we initially tested it with well-described virulence and avirulence type III effectors from the bacterial pathogen Ralstonia solanacearum. After proving the accuracy and efficiency of the TMV-GFP system, we successfully screened a novel virulence effector, RipS1, using this approach. Furthermore, using the TMV-GFP system, we reproduced consistent results with previously known cytoplasmic effectors from a diverse array of pathogens. Additionally, we demonstrated the effectiveness of the TMV-GFP system in identifying apoplastic effectors. The easy operation, time-saving nature, broad effectiveness, and low technical requirements of the TMV-GFP system make it a promising approach for high-throughput screening of effectors with immune interference activity from various pathogens.
Collapse
Affiliation(s)
- Peng Cao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Haotian Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangxi Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jialan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yuyan An
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Yang S, Wan M, Cheng X, Cheng Q, Shen H. A 14-3-3 Protein Ca16R Acts Positively in Pepper Immunity against Ralstonia solanacearum by Interacting with CaASR1. PLANTS (BASEL, SWITZERLAND) 2024; 13:1289. [PMID: 38794360 PMCID: PMC11125135 DOI: 10.3390/plants13101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Although 14-3-3 proteins have been implicated in plant growth, development, and stress response, their roles in pepper immunity against R. solanacearum remain poorly understood. In this study, a 14-3-3-encoding gene in pepper, Ca16R, was found to be upregulated by R. solanacearum inoculation (RSI), its silencing significantly reduced the resistance of pepper plants to RSI, and its overexpression significantly enhanced the resistance of Nicotiana benthamiana to RSI. Consistently, its transient overexpression in pepper leaves triggered HR cell death, indicating that it acts positively in pepper immunity against RSI, and it was further found to act positively in pepper immunity against RSI by promoting SA but repressing JA signaling. Ca16R was also found to interact with CaASR1, originally using pull-down combined with a spectrum assay, and then confirmed using bimolecular fluorescence complementation (BiFC) and a pull-down assay. Furthermore, we found that CaASR1 transient overexpression induced HR cell death and SA-dependent immunity while repressing JA signaling, although this induction and repression was blocked by Ca16R silencing. All these data indicate that Ca16R acts positively in pepper immunity against RSI by interacting with CaASR1, thereby promoting SA-mediated immunity while repressing JA signaling. These results provide new insight into mechanisms underlying pepper immunity against RSI.
Collapse
Affiliation(s)
- Sheng Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China;
| | - Meiyun Wan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (X.C.)
| | - Xingge Cheng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (X.C.)
| | - Qing Cheng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China;
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
5
|
Zhang S, Cao P, Xiao Z, Zhang Q, Qiang Y, Meng H, Yang A, An Y, Zhang M. Rastonia solanacearum type Ⅲ effectors target host 14-3-3 proteins to suppress plant immunity. Biochem Biophys Res Commun 2024; 690:149256. [PMID: 37992525 DOI: 10.1016/j.bbrc.2023.149256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
14-3-3 proteins play important roles in plant metabolism and stress response. Tomato 14-3-3 proteins, SlTFT4 and SlTFT7, serve as hubs of plant immunity and are targeted by some pathogen effectors. Ralstonia solanacearum with more than 70 type Ⅲ effectors (T3Es) is one of the most destructive plant pathogens. However, little is known on whether R. solanacearum T3Es target SlTFT4 and SlTFT7 and hence interfere with plant immunity. We first detected the associations of SlTFT4/SlTFT7 with R. solanacearum T3Es by luciferase complementation assay, and then confirmed the interactions by yeast two-hybrid approach. We demonstrated that 22 Ralstonia T3Es were associated with both SlTFT4 and SlTFT7, and five among them suppressed the hypersensitive response induced by MAPKKKα, a protein kinase which associated with SlTFT4/SlTFT7. We further demonstrated that suppression of MAPKKKα-induced HR and plant basal defense by the T3E RipAC depend on its association with 14-3-3 proteins. Our findings firstly demonstrate that R. solanacearum T3Es can manipulate plant immunity by targeting 14-3-3 proteins, SlTFT4 and SlTFT7, providing new insights into plant-R. solanacearum interactions.
Collapse
Affiliation(s)
- Shuangxi Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Cao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhiliang Xiao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qi Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Qiang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - He Meng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yuyan An
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Meixiang Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
6
|
Liu JY, Zhang JF, Wu HL, Chen Z, Li SY, Li HM, Zhang CP, Zhou YQ, Lu CH. Proposal to classify Ralstonia solanacearum phylotype I strains as Ralstonia nicotianae sp. nov., and a genomic comparison between members of the genus Ralstonia. Front Microbiol 2023; 14:1135872. [PMID: 37032877 PMCID: PMC10073495 DOI: 10.3389/fmicb.2023.1135872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
A Gram-negative, aerobic, rod-shaped, motile bacterium with multi-flagella, strain RST, was isolated from bacterial wilt of tobacco in Yuxi city of Yunnan province, China. The strain contains the major fatty acids of C16:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The polar lipid profile of strain RST consists of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and unidentified aminophospholipid. Strain RST contains ubiquinones Q-7 and Q-8. 16S rRNA gene sequence (1,407 bp) analysis showed that strain RST is closely related to members of the genus Ralstonia and shares the highest sequence identities with R. pseudosolanacearum LMG 9673T (99.50%), R. syzygii subsp. indonesiensis LMG 27703T (99.50%), R. solanacearum LMG 2299T (99.28%), and R. syzygii subsp. celebesensis LMG 27706T (99.21%). The 16S rRNA gene sequence identities between strain RST and other members of the genus Ralstonia were below 98.00%. Genome sequencing yielded a genome size of 5.61 Mbp and a G + C content of 67.1 mol%. The genomic comparison showed average nucleotide identity (ANIb) values between strain RST and R. pseudosolanacearum LMG 9673T, R. solanacearum LMG 2299T, and R. syzygii subsp. indonesiensis UQRS 627T of 95.23, 89.43, and 91.41%, respectively, and the corresponding digital DNA-DNA hybridization (dDDH) values (yielded by formula 2) were 66.20, 44.80, and 47.50%, respectively. In addition, strains belonging to R. solanacearum phylotype I shared both ANIb and dDDH with strain RST above the species cut-off values of 96 and 70%, respectively. The ANIb and dDDH values between the genome sequences from 12 strains of R. solanacearum phylotype III (Current R. pseudosolanacearum) and those of strain RST were below the species cut-off values. Based on these data, we concluded that strains of phylotype I, including RST, represent a novel species of the genus Ralstonia, for which the name Ralstonia nicotianae sp. nov. is proposed. The type strain of Ralstonia nicotianae sp. nov. is RST (=GDMCC 1.3533T = JCM 35814T).
Collapse
Affiliation(s)
- Jun-Ying Liu
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
- Institute of Biology and Environmental Engineering, Yuxi Normal University, Yuxi, China
| | - Jian-Feng Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Han-Lian Wu
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Zhen Chen
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Shu-Ying Li
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Hong-Mei Li
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Cui-Ping Zhang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Yuan-Qing Zhou
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Can-Hua Lu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| |
Collapse
|
7
|
De Ryck J, Van Damme P, Goormachtig S. From prediction to function: Current practices and challenges towards the functional characterization of type III effectors. Front Microbiol 2023; 14:1113442. [PMID: 36846751 PMCID: PMC9945535 DOI: 10.3389/fmicb.2023.1113442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
The type III secretion system (T3SS) is a well-studied pathogenicity determinant of many bacteria through which effectors (T3Es) are translocated into the host cell, where they exercise a wide range of functions to deceive the host cell's immunity and to establish a niche. Here we look at the different approaches that are used to functionally characterize a T3E. Such approaches include host localization studies, virulence screenings, biochemical activity assays, and large-scale omics, such as transcriptomics, interactomics, and metabolomics, among others. By means of the phytopathogenic Ralstonia solanacearum species complex (RSSC) as a case study, the current advances of these methods will be explored, alongside the progress made in understanding effector biology. Data obtained by such complementary methods provide crucial information to comprehend the entire function of the effectome and will eventually lead to a better understanding of the phytopathogen, opening opportunities to tackle it.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|