1
|
Ulhaq ZS, You MS, Yabe T, Takada S, Chen JK, Ogino Y, Jiang YJ, Tse WKF. Fgf8 contributes to the pathogenesis of Nager syndrome. Int J Biol Macromol 2024; 280:135692. [PMID: 39288852 DOI: 10.1016/j.ijbiomac.2024.135692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Nager syndrome (NS, OMIM 154400) is a rare disease characterized by craniofacial and limb malformations due to variants in the gene encoding splicing factor 3B subunit 4 (SF3B4). Although various noncanonical functions of SF3B4 unrelated to splicing have been previously described, limited studies elucidate molecular mechanisms underlying NS pathogenesis. Here we showed that sf3b4-deficient fish displayed craniofacial and segmentation defects associated with suppression of fgf8 levels, which perturbed FGF signaling and neural crest cell (NCC) expression. Our finding also pointed out that oxidative stress-induced apoptosis was prominently detected in sf3b4-deficient fish and may further exaggerate the bone remodeling process. Notably, injection of exogenous FGF8 significantly rescued the demonstrated defects in sf3b4-deficient fish, which further supported the participation of Fgf8 in NS pathogenesis. Overall, our study provides valuable insights into the molecular mechanism underlying developmental abnormalities observed in NS and suggests future therapeutic strategies to protect against the pathogenesis of NS and possibilities for preventing severe outcomes.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong 16911, Indonesia.
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Taijiro Yabe
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinji Takada
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Ulhaq ZS, You MS, Jiang YJ, Tse WKF. p53 inhibitor or antioxidants reduce the severity of ethmoid plate deformities in zebrafish Type 3 Treacher Collins syndrome model. Int J Biol Macromol 2024; 266:131216. [PMID: 38556235 DOI: 10.1016/j.ijbiomac.2024.131216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Treacher Collins syndrome-3 (TCS-3) is a rare congenital craniofacial disorder attributed to variants in the RNA pol I subunit C (POLR1C). The pathogenesis of TCS-3 linked to polr1c involves the activation of apoptosis-dependent p53 pathways within neural crest cells (NCCs). This occurs due to disruptions in ribosome biogenesis, and the restoration of polr1c expression in early embryogenesis effectively rescues the observed craniofacial phenotype in polr1c-deficient zebrafish. Clinical variability in TCS patients suggests interactions between genes and factors like oxidative stress. Elevated production of reactive oxygen species (ROS) in epithelial cells may worsen phenotypic outcomes in TCS individuals. Our study confirmed excessive ROS production in facial regions, inducing apoptosis and altering p53 pathways. Deregulated cell-cycle and epithelial-to-mesenchymal transition (EMT) genes were also detected in the TCS-3 model. Utilizing p53 inhibitor (Pifithrin-α; PFT-α) or antioxidants (Glutathione; GSH and N-Acetyl-L-cysteine; NAC) effectively corrected migrated NCC distribution in the pharyngeal arch (PA), suppressed oxidative stress, prevented cell death, and modulated EMT inducers. Crucially, inhibiting p53 activation or applying antioxidants within a specific time window, notably within 30 h post-fertilization (hpf), successfully reversed phenotypic effects induced by polr1c MO.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Cibinong 16911, Indonesia.
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Ulhaq ZS, Tse WKF. Transcriptomic analysis reveals mitochondrial dysfunction in the pathogenesis of Nager syndrome in sf3b4-depleted zebrafish. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167128. [PMID: 38508476 DOI: 10.1016/j.bbadis.2024.167128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Nager syndrome (NS) is a rare acrofacial dysostosis caused by heterozygous loss-of-function variants in the splicing factor 3B subunit 4 (SF3B4). The main clinical features of patients with NS are characterized by facial-mandibular and preaxial limb malformations. The migration and specification of neural crest cells are crucial for craniofacial development, and mitochondrial fitness appears to play a role in such processes. Here, by analyzing our previously published transcriptome dataset, we aim to investigate the potential involvement of mitochondrial components in the pathogenesis of craniofacial malformations, especially in sf3b4 mutant zebrafish. We identified that oxidative phosphorylation (OXPHOS) defects and overproduction of reactive oxygen species (ROS) due to decreased antioxidants defense activity, which leads to oxidative damage and mitochondrial dysfunction. Furthermore, our results highlight that fish lacking sf3b4 gene, primarily display defects in mitochondrial complex I. Altogether, our findings suggest that mitochondrial dysfunction may contribute to the development of the craniofacial anomalies observed in sf3b4-depleted zebrafish.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia.
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Ulhaq ZS, Bittencourt GB, Soraya GV, Istifiani LA, Pamungkas SA, Ogino Y, Nurputra DK, Tse WKF. Association between glaucoma susceptibility with combined defects in mitochondrial oxidative phosphorylation and fatty acid beta oxidation. Mol Aspects Med 2024; 96:101238. [PMID: 38215610 DOI: 10.1016/j.mam.2023.101238] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 01/14/2024]
Abstract
Glaucoma is one of the leading causes of visual impairment and blindness worldwide, and is characterized by the progressive damage of retinal ganglion cells (RGCs) and the atrophy of the optic nerve head (ONH). The exact cause of RGC loss and optic nerve damage in glaucoma is not fully understood. The high energy demands of these cells imply a higher sensitivity to mitochondrial defects. Moreover, it has been postulated that the optic nerve is vulnerable towards damage from oxidative stress and mitochondrial dysfunction. To investigate this further, we conducted a pooled analysis of mitochondrial variants related to energy production, specifically focusing on oxidative phosphorylation (OXPHOS) and fatty acid β-oxidation (FAO). Our findings revealed that patients carrying non-synonymous (NS) mitochondrial DNA (mtDNA) variants within the OXPHOS complexes had an almost two-fold increased risk of developing glaucoma. Regarding FAO, our results demonstrated that longer-chain acylcarnitines (AC) tended to decrease, while shorter-chain AC tended to increase in patients with glaucoma. Furthermore, we observed that the knocking down cpt1a (a key rate-limiting enzyme involved in FAO) in zebrafish induced a degenerative process in the optic nerve and RGC, which resembled the characteristics observed in glaucoma. In conclusion, our study provides evidence that genes encoding mitochondrial proteins involved in energy metabolisms, such as OXPHOS and FAO, are associated with glaucoma. These findings contribute to a better understanding of the molecular mechanisms underlying glaucoma pathogenesis and may offer potential targets for therapeutic interventions in the future.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia; Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Guido Barbieri Bittencourt
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, Indonesia
| | | | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
5
|
Ulhaq ZS, Ogino Y, Tse WKF. Transcriptome alterations in sf3b4-depleted zebrafish: Insights into cataract formation in retinitis pigmentosa model. Exp Eye Res 2024; 240:109819. [PMID: 38311285 DOI: 10.1016/j.exer.2024.109819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Posterior subcapsular cataract (PSC) frequently develops as a complication in patients with retinitis pigmentosa (RP). Despite numerous scientific investigations, the intricate pathomechanisms underlying cataract formation in individuals affected by RP remain elusive. Therefore, our study aims to elucidate the potential pathogenesis of cataracts in an RP model using splicing factor subunit 3b (sf3b4) mutant zebrafish. By analyzing our previously published transcriptome dataset, we identified that, in addition to RP, cataract was listed as the second condition in our transcriptomic analysis. Furthermore, we confirmed the presence of nucleus retention in the lens fiber cells, along with abnormal cytoskeleton expression in both the lens fiber cells and lens epithelial cells in sf3b4-depleted fish. Upon closer examination, we identified 20 differentially expressed genes (DEGs) that played a role in cataract formation, with 95 % of them related to the downregulation of structural lens proteins. Additionally, we also identified that among all the DEGs, 13 % were associated with fibrotic processes. It seems that the significant upregulation of inflammatory mediators, in conjunction with TGF-β signaling, plays a central role in the cellular biology of PSC and posterior capsular opacification (PCO) in sf3b4 mutant fish. In summary, our study provides valuable insights into cataract formation in the RP model of sf3b4 mutants, highlighting its complexity driven by changes in structural lens proteins and increased cytokines/growth factors.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia.
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
6
|
Ulhaq ZS, Tse WKF. PFHxS Exposure and the Risk of Non-Alcoholic Fatty Liver Disease. Genes (Basel) 2024; 15:93. [PMID: 38254982 PMCID: PMC10815161 DOI: 10.3390/genes15010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Perfluorohexanesulfonic acid (PFHxS) is a highly prevalent environmental pollutant, often considered to be less toxic than other poly- and perfluoroalkyl substances (PFASs). Despite its relatively lower environmental impact compared to other PFASs, several studies have suggested that exposure to PFHxS may be associated with disruptions of liver function in humans. Nevertheless, the precise pathomechanisms underlying PFHxS-induced non-alcoholic fatty liver disease (NAFLD) remain relatively unclear. Therefore, this study applied our previously published transcriptome dataset to explore the effects of PFHxS exposure on the susceptibility to NAFLD and to identify potential mechanisms responsible for PFHxS-induced NAFLD through transcriptomic analysis conducted on zebrafish embryos. Results showed that exposure to PFHxS markedly aggravated hepatic symptoms resembling NAFLD and other metabolic syndromes (MetS) in fish. Transcriptomic analysis unveiled 17 genes consistently observed in both NAFLD and insulin resistance (IR), along with an additional 28 genes identified in both the adipocytokine signaling pathway and IR. These shared genes were also found within the NAFLD dataset, suggesting that hepatic IR may play a prominent role in the development of PFHxS-induced NAFLD. In conclusion, our study suggests that environmental exposure to PFHxS could be a potential risk factor for the development of NAFLD, challenging the earlier notion of PFHxS being safer as previously claimed.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong 16911, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Ulhaq ZS, Okamoto K, Ogino Y, Tse WKF. Dysregulation of Spliceosomes Complex Induces Retinitis Pigmentosa-Like Characteristics in sf3b4-Depleted Zebrafish. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1223-1233. [PMID: 37263342 DOI: 10.1016/j.ajpath.2023.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
The SF3B4 gene encodes a highly conserved protein that plays a critical role in mRNA splicing. Mutations in this gene are known to cause Nager syndrome, a rare craniofacial disorder. Although SF3B4 expression is detected in the optic vesicle before it is detected in the limb and somite, the role of SF3B4 in the eye is not well understood. This study investigated the function of sf3b4 in the retina by performing transcriptome profiles, immunostaining, and behavioral analysis of sf3b4-/- mutant zebrafish. Results from this study suggest that dysregulation of the spliceosome complex affects not only craniofacial development but also retinogenesis. Zebrafish lacking functional sf3b4 displayed characteristics similar to retinitis pigmentosa (RP), marked by severe retinal pigment epithelium defects and rod degeneration. Pathway analysis revealed altered retinol metabolism and retinoic acid signaling in the sf3b4-/- mutants. Supplementation of retinoic acid rescued key cellular phenotypes observed in the sf3b4-/- mutants, offering potential therapeutic strategies for RP in the future. In conclusion, this study sheds light on the previously unknown role of SF3B4 in retinogenesis and provides insights into the underlying mechanisms of RP.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Republic of Indonesia, Cibinong, Indonesia.
| | - Keigo Okamoto
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
8
|
Ulhaq ZS, Ogino Y, Tse WKF. Deciphering the pathogenesis of retinopathy associated with carnitine palmitoyltransferase I deficiency in zebrafish model. Biochem Biophys Res Commun 2023; 664:100-107. [PMID: 37141637 DOI: 10.1016/j.bbrc.2023.04.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Fatty acid oxidation disorders (FAODs) are a group of rare genetic metabolic disorders caused by mutations in genes responsible for transporting and metabolizing fatty acids in the mitochondria. One crucial enzyme involved in this process is carnitine palmitoyltransferase I (CPT1), which transports long-chain fatty acids to the mitochondrial matrix for beta-oxidation. Defects in beta-oxidation enzymes often lead to pigmentary retinopathy; however, the underlying mechanisms are not entirely understood. To investigate FAOD and its impact on the retina, we employed zebrafish as a model organism. Specifically, we used antisense-mediated knockdown strategies to target the cpt1a gene and examined the resulting retinal phenotypes. We demonstrated that the cpt1a MO-injected fish significantly reduced the length of connecting cilia and severely affected photoreceptor cell development. Moreover, our findings highlight that the loss of functional cpt1a disrupted energy homeostasis in the retina, leading to lipid droplet deposition and promoting ferroptosis, which is likely attributed to the photoreceptor degeneration and visual impairments observed in the cpt1a morphants.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Cibinong, Indonesia.
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|