1
|
Ryzhov V, Marchenko Y, Deriglazov V, Yudintceva N, Smirnov O, Arutyunyan A, Shtam T, Ivanov E, Combs SE, Shevtsov M. Nonlinear Magnetic Response Measurements in Study of Magnetic Nanoparticles Uptake by Mesenchymal Stem Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:675. [PMID: 40358293 PMCID: PMC12073591 DOI: 10.3390/nano15090675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Stem cells therapies offer a promising approach in translational oncology, as well as in regenerative medicine due to the tropism of these cells to the damage site. To track the distribution of stem cells, the latter could be labeled by MRI-sensitive superparamagnetic (SPM) iron oxide nanoparticles. In the current study, magnetic properties of the magnetic nanoparticles (MNPs) incorporated into the bone marrow-derived fetal mesenchymal stem cells (FetMSCs) were evaluated employing nonlinear magnetic response measurements. Synthesized dextran-coated iron oxide nanoparticles were additionally characterized by X-ray diffraction, transmission electron microscopy, and dynamic light scattering. The MNP uptake by the FetMSCs 24 h following coincubation was studied by longitudinal nonlinear response to weak alternating magnetic field with registration of the second harmonic of magnetization. Subsequent data processing using a formalism based on the numerical solution of the Fokker-Planck kinetic equation allowed us to determine magnetic and dynamic parameters and the state of MNPs in the cells, as well as in the culture medium. It was found that MNPs formed aggregates in the culture medium; they were absorbed by the cells during coincubation. The aggregates exhibited SPM regime in the medium, and the parameters of the MNP aggregates remained virtually unchanged in the cells, indicating the preservation of the aggregation state of MNPs inside the cells. This implies also the preservation of the organic shell of the nanoparticles inside FetMSCs. The accumulation of MNPs by mesenchymal stem cells gradually increased with the concentration of MNPs. Thus, the study confirmed that the labeling of MSCs with MNPs is an effective method for subsequent cell tracking as incorporated nanoparticles retain their magnetic properties.
Collapse
Affiliation(s)
- Vyacheslav Ryzhov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova Roscha 1, 188300 Gatchina, Russia; (Y.M.); (V.D.); (O.S.); (A.A.); (T.S.)
| | - Yaroslav Marchenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova Roscha 1, 188300 Gatchina, Russia; (Y.M.); (V.D.); (O.S.); (A.A.); (T.S.)
| | - Vladimir Deriglazov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova Roscha 1, 188300 Gatchina, Russia; (Y.M.); (V.D.); (O.S.); (A.A.); (T.S.)
| | - Natalia Yudintceva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia;
| | - Oleg Smirnov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova Roscha 1, 188300 Gatchina, Russia; (Y.M.); (V.D.); (O.S.); (A.A.); (T.S.)
| | - Alexandr Arutyunyan
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova Roscha 1, 188300 Gatchina, Russia; (Y.M.); (V.D.); (O.S.); (A.A.); (T.S.)
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova Roscha 1, 188300 Gatchina, Russia; (Y.M.); (V.D.); (O.S.); (A.A.); (T.S.)
| | - Evgenii Ivanov
- LLC “SPF “HELIX”, Sampsonievsky B. Prospect, 20 Litera A, 194044 St. Petersburg, Russia;
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia;
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany;
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| |
Collapse
|
2
|
Szyk P, Czarczynska-Goslinska B, Ziegler-Borowska M, Larrosa I, Goslinski T. Sorafenib-Drug Delivery Strategies in Primary Liver Cancer. J Funct Biomater 2025; 16:148. [PMID: 40278256 PMCID: PMC12027913 DOI: 10.3390/jfb16040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Current primary liver cancer therapies, including sorafenib and transarterial chemoembolization, face significant limitations due to chemoresistance caused by impaired drug uptake, altered metabolism, and other genetic modulations. These challenges contribute to relapse rates of 50-80% within five years. The need for improved treatment strategies (adjuvant therapy, unsatisfactory enhanced permeability and retention (EPR) effect) has driven research into advanced drug delivery systems, including targeted nanoparticles, biomaterials, and combinatory approaches. Therefore, this review evaluates recent advancements in primary liver cancer pharmacotherapy, focusing on the potential of drug delivery systems for sorafenib and its derivatives. Approaches such as leveraging Kupffer cells for tumor migration or utilizing smaller NPs for inter-/intracellular delivery, address EPR limitations. Biomaterials and targeted therapies focusing on targeting have demonstrated effectiveness in increasing tumor-specific delivery, but clinical evidence remains limited. Combination therapies have emerged as an interesting solution to overcoming chemoresistance or to broadening therapeutic functionality. Biomimetic delivery systems, employing blood cells or exosomes, provide methods for targeting tumors, preventing metastasis, and strengthening immune responses. However, significant differences between preclinical models and human physiology remain a barrier to translating these findings into clinical success. Future research must focus on the development of adjuvant therapy and refining drug delivery systems to overcome the limitations of tumor heterogeneity and low drug accumulation.
Collapse
Affiliation(s)
- Piotr Szyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Igor Larrosa
- Department of Chemistry, University of Manchester, Chemistry Building, Oxford Road, Manchester M13 9PL, UK;
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
3
|
Yang J, Xu P, Zhang G, Wang D, Ye B, Wu L. Advances and potentials in platelet-circulating tumor cell crosstalk. Am J Cancer Res 2025; 15:407-425. [PMID: 40084364 PMCID: PMC11897628 DOI: 10.62347/jayk5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025] Open
Abstract
Tumor metastasis leads to circulating tumor cells (CTCs) that separate from primary malignant tumors and enter blood circulation. CTCs survive and engage with other cells to cope with obstacles, including shear stress, disease, immune attacks, and drugs. Platelets are the best partners for CTCs. Platelets provide a good protective layer for CTCs to ensure that are not monitored and cleared by the native immune system, and protected from shear stress and survive better. Here, we review current reports on platelet-CTC interaction and the clinical relevance of their combination and summarize new techniques for CTC capture and treatment based on platelet-CTC interaction. We discuss current data, identify its shortcomings, and suggest future developments.
Collapse
Affiliation(s)
- Jie Yang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Bo Ye
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| | - Lichun Wu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China Chengdu, Sichuan, The People's Republic of China
| |
Collapse
|
4
|
Yun Y, Kim S, Lee SN, Cho HY, Choi JW. Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy. NANO CONVERGENCE 2024; 11:56. [PMID: 39671082 PMCID: PMC11645384 DOI: 10.1186/s40580-024-00466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Nanomaterials have emerged as transformative tools for detecting circulating tumor cells (CTCs) and circulating cancer stem cells (CCSCs), significantly enhancing cancer diagnostics and immunotherapy. Nanomaterials, including those composed of gold, magnetic materials, and silica, have enhanced the sensitivity, specificity, and efficiency of isolating these rare cells from blood. These developments are of paramount importance for the early detection of cancer and for providing real-time insights into metastasis and treatment resistance, which are essential for the development of personalized immunotherapies. The combination of nanomaterial-based platforms with phenotyping techniques, such as Raman spectroscopy and microfluidics, enables researchers to enhance immunotherapy protocols targeting specific CTC and CCSC markers. Nanomaterials also facilitate the targeted delivery of immunotherapeutic agents, including immune checkpoint inhibitors and therapeutic antibodies, directly to tumor cells. This synergistic approach has the potential to enhance therapeutic efficacy and mitigate the risk of metastasis and relapse. In conclusion, this review critically examines the use of nanomaterial-driven detection systems for detecting CTCs and CCSCs, their application in immunotherapy, and suggests future directions, highlighting their potential to transform the integration of diagnostics and treatment, thereby paving the way for more precise and personalized cancer therapies.
Collapse
Affiliation(s)
- Yeochan Yun
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea.
| | - Hyeon-Yeol Cho
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
5
|
Basar E, Mead H, Shum B, Rauter I, Ay C, Skaletz-Rorowski A, Brockmeyer NH. Biological Barriers for Drug Delivery and Development of Innovative Therapeutic Approaches in HIV, Pancreatic Cancer, and Hemophilia A/B. Pharmaceutics 2024; 16:1207. [PMID: 39339243 PMCID: PMC11435036 DOI: 10.3390/pharmaceutics16091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Biological barriers remain a major obstacle for the development of innovative therapeutics. Depending on a disease's pathophysiology, the involved tissues, cell populations, and cellular components, drugs often have to overcome several biological barriers to reach their target cells and become effective in a specific cellular compartment. Human biological barriers are incredibly diverse and include multiple layers of protection and obstruction. Importantly, biological barriers are not only found at the organ/tissue level, but also include cellular structures such as the outer plasma membrane, the endolysosomal machinery, and the nuclear envelope. Nowadays, clinicians have access to a broad arsenal of therapeutics ranging from chemically synthesized small molecules, biologicals including recombinant proteins (such as monoclonal antibodies and hormones), nucleic-acid-based therapeutics, and antibody-drug conjugates (ADCs), to modern viral-vector-mediated gene therapy. In the past decade, the therapeutic landscape has been changing rapidly, giving rise to a multitude of innovative therapy approaches. In 2018, the FDA approval of patisiran paved the way for small interfering RNAs (siRNAs) to become a novel class of nucleic-acid-based therapeutics, which-upon effective drug delivery to their target cells-allow to elegantly regulate the post-transcriptional gene expression. The recent approvals of valoctocogene roxaparvovec and etranacogene dezaparvovec for the treatment of hemophilia A and B, respectively, mark the breakthrough of viral-vector-based gene therapy as a new tool to cure disease. A multitude of highly innovative medicines and drug delivery methods including mRNA-based cancer vaccines and exosome-targeted therapy is on the verge of entering the market and changing the treatment landscape for a broad range of conditions. In this review, we provide insights into three different disease entities, which are clinically, scientifically, and socioeconomically impactful and have given rise to many technological advancements: acquired immunodeficiency syndrome (AIDS) as a predominant infectious disease, pancreatic carcinoma as one of the most lethal solid cancers, and hemophilia A/B as a hereditary genetic disorder. Our primary objective is to highlight the overarching principles of biological barriers that can be identified across different disease areas. Our second goal is to showcase which therapeutic approaches designed to cross disease-specific biological barriers have been promising in effectively treating disease. In this context, we will exemplify how the right selection of the drug category and delivery vehicle, mode of administration, and therapeutic target(s) can help overcome various biological barriers to prevent, treat, and cure disease.
Collapse
Affiliation(s)
- Emre Basar
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | | | - Bennett Shum
- GenePath LLC, Sydney, NSW 2067, Australia
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia
| | | | - Cihan Ay
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Adriane Skaletz-Rorowski
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | - Norbert H. Brockmeyer
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| |
Collapse
|
6
|
Lv X, Lan G, Zhu L, Guo Q. Breaking the Barriers of Therapy Resistance: Harnessing Ferroptosis for Effective Hepatocellular Carcinoma Therapy. J Hepatocell Carcinoma 2024; 11:1265-1278. [PMID: 38974015 PMCID: PMC11227329 DOI: 10.2147/jhc.s469449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Ferroptosis is a type of cell death that relies on iron and is distinguished by the occurrence of lipid peroxidation and the buildup of reactive oxygen species. Ferroptosis has been demonstrated to have a significant impact on the advancement and resistance to treatment of hepatocellular carcinoma (HCC), thereby highlighting its potential as a viable therapeutic target. Ferroptosis was observed in HCC tissues in contrast to normal liver tissue. The inhibition of ferroptosis has been found to increase the viability of HCC cells and decrease their susceptibility to various anticancer therapies, including chemotherapy, radiotherapy, and immune checkpoint blockade. The administration of drugs that directly modulate ferroptosis regulators or induce excessive production of lipid-reactive oxygen species has demonstrated the potential to enhance the responsiveness of drug-resistant HCC cells to treatment. However, the precise mechanism underlying this phenomenon remains ambiguous. This review presents a comprehensive overview of the crucial role played by ferroptosis in enhancing the efficacy of treatment for hepatocellular carcinoma (HCC). The main aim of this study is to examine the feasibility of utilizing ferroptosis as a therapeutic approach to improve the efficacy of HCC treatment and overcome drug resistance.
Collapse
Affiliation(s)
- Xianmei Lv
- Department of Radiotherapy, Jinhua People’s Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| | - Gaochen Lan
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, People’s Republic of China
| | - Lujian Zhu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, People’s Republic of China
| | - Qiusheng Guo
- Department of Radiotherapy, Jinhua People’s Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China
| |
Collapse
|
7
|
Zhong Z, Deng W, Wu J, Shang H, Tong Y, He Y, Huang Q, Ba X, Chen Z, Tang K. Cell membrane coated nanoparticles as a biomimetic drug delivery platform for enhancing cancer immunotherapy. NANOSCALE 2024; 16:8708-8738. [PMID: 38634521 DOI: 10.1039/d4nr00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Cancer immunotherapy, a burgeoning modality for cancer treatment, operates by activating the autoimmune system to impede the growth of malignant cells. Although numerous immunotherapy strategies have been employed in clinical cancer therapy, the resistance of cancer cells to immunotherapeutic medications and other apprehensions impede the attainment of sustained advantages for most patients. Recent advancements in nanotechnology for drug delivery hold promise in augmenting the efficacy of immunotherapy. However, the efficacy is currently constrained by the inadequate specificity of delivery, low rate of response, and the intricate immunosuppressive tumor microenvironment. In this context, the investigation of cell membrane coated nanoparticles (CMNPs) has revealed their ability to perform targeted delivery, immune evasion, controlled release, and immunomodulation. By combining the advantageous features of natural cell membranes and nanoparticles, CMNPs have demonstrated their unique potential in the realm of cancer immunotherapy. This review aims to emphasize recent research progress and elucidate the underlying mechanisms of CMNPs as an innovative drug delivery platform for enhancing cancer immunotherapy. Additionally, it provides a comprehensive overview of the current immunotherapeutic strategies involving different cell membrane types of CMNPs, with the intention of further exploration and optimization.
Collapse
Affiliation(s)
- Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|