1
|
Sharma AK, Mukherjee M, Akhtar MS, Orayj K, Farooqui S, Khan A. Genetic-epigenetic targets for PCOS-associated diabesity. Drug Discov Today 2025; 30:104373. [PMID: 40345613 DOI: 10.1016/j.drudis.2025.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 04/08/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
Polycystic ovary syndrome (PCOS) and diabesity are interconnected endocrine disorders driven by a complex interplay of genetic, epigenetic and environmental factors. This review examines the molecular crosstalk between PCOS and diabesity, focusing on shared pathophysiological pathways and their regulatory mechanisms. Key genetic predispositions (such as polymorphisms) associated with insulin resistance, androgen biosynthesis and inflammation have been conferred that could significantly contribute to their overlapping phenotypes. Additionally, epigenetic modifications, including DNA methylation, histone modifications and non-coding RNAs, have been discussed that further participate in regulation of gene expression and metabolic dysfunction. Understanding these molecular interconnections highlights crucial signaling nodes that can serve as potential therapeutic targets. This review underscores emerging avenues for drug development, aiming to mitigate disease progression and improve patient outcomes.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, Haryana 122413, India.
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Alfara, Abha 62223, Saudi Arabia
| | - Khalid Orayj
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Alfara, Abha 62223, Saudi Arabia
| | - Sadaf Farooqui
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abida Khan
- Center for Health Research, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|
2
|
Sharma V, Kansara S, Singh J, Kumar Y, Kumar A, Akhtar MS, Khan MF, Alamoudi MK, Mukherjee M, Sharma AK. Validating the temporal performance of genetic biomarkers in an animal model of recurrence/ non-recurrence myocardial infarction persuades by bioinformatics tools. Eur J Pharmacol 2024; 978:176795. [PMID: 38950836 DOI: 10.1016/j.ejphar.2024.176795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
With a global towering prevalence of index acute myocardial infarction (nonrecurrent MI, NR-MI), a high incidence of recurrent MI (R-MI) has emerged in recent decades. Despite the extensive occurrence, the promising predictors of R-MI have been elusive within the cohort of survivors. This study investigates and validates the involvement of distinct gene expressions in R-MI and NR-MI. Bioinformatics tools were used to identify DEGs from the GEO dataset, functional annotation, pathway enrichment analysis, and the PPI network analysis to find hub genes. The validation of proposed genes was conceded by qRT-PCR and Western Blot analysis in experimentally induced NR-MI and R-MI models on a temporal basis. The temporal findings based on RT-PCR consequences reveal a significant and constant upregulation of the UBE2N in the NR-MI model out of the proposed three DEGs (UBE2N, UBB, and TMEM189), while no expression was reported in the R-MI model. Additionally, the proteomics study proposed five DEGs (IL2RB, NKG7, GZMH, CXCR6, and GZMK) for the R-MI model since IL2RB was spotted for significant and persistent downregulation with different time points. Further, Western Blot analysis validated these target genes' expressions temporally. I/R-induced NR-MI and R-MI models were confirmed by the biochemical parameters (CKMB, LDH, cTnI, serum nitrite/nitrate concentration, and inflammatory cytokines) and histological assessments of myocardial tissue. These results underscore the importance of understanding genetic mechanisms underlying MI and highlight the potential of UBE2N and IL2RB as biomarkers for non-recurrent and recurrent MI, respectively.
Collapse
Affiliation(s)
- Vikash Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana, 122413, India
| | - Jitender Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Yash Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Ashish Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Md Sayeed Akhtar
- College of Pharmacy, King Khalid University, Alfara, Abha, 62223, Saudi Arabia
| | - Mohd Faiyaz Khan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mariam K Alamoudi
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201303, India.
| | - Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India.
| |
Collapse
|
3
|
Sharma V, Singh J, Kumar A, Kansara S, Akhtar MS, Khan MF, Aldosari SA, Mukherjee M, Sharma AK. Integrative experimental validation of concomitant miRNAs and transcription factors with differentially expressed genes in acute myocardial infarction. Eur J Pharmacol 2024; 971:176540. [PMID: 38552938 DOI: 10.1016/j.ejphar.2024.176540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Identification of concomitant miRNAs and transcription factors (TFs) with differential expression (DEGs) in MI is crucial for understanding holistic gene regulation, identifying key regulators, and precision in biomarker and therapeutic target discovery. We performed a comprehensive analysis using Affymetrix microarray data, advanced bioinformatic tools, and experimental validation to explore potential biomarkers associated with human pathology. The search strategy includes the identification of the GSE83500 dataset, comprising gene expression profiles from aortic wall punch biopsies of MI and non-MI patients, which were used in the present study. The analysis identified nine distinct genes exhibiting DEGs within the realm of MI. miRNA-gene/TF and TF-gene/miRNA regulatory relations were mapped to retrieve interacting hub genes to acquire an MI miRNA-TF co-regulatory network. Furthermore, an animal model of I/R-induced MI confirmed the involved gene based on quantitative RT-PCR and Western blot analysis. The consequences of the bioinformatic tool substantiate the inference regarding the presence of three key hub genes (UBE2N, TMEM106B, and CXADR), a central miRNA (hsa-miR-124-3p), and sixteen TFs. Animal studies support the involvement of predicted genes in the I/R-induced myocardial infarction assessed by RT-PCR and Western blotting. Thus, the final consequences suggest the involvement of promising molecular pathways regulated by TF (p53/NF-κB1), miRNA (hsa-miR-124-3p), and hub gene (UBE2N), which may play a key role in the pathogenesis of MI.
Collapse
Affiliation(s)
- Vikash Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Jitender Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Ashish Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana, 122413, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Alfara, Abha, 62223, Saudi Arabia
| | - Mohd Faiyaz Khan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saad A Aldosari
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India.
| |
Collapse
|