Murata T, Tochio N, Utsunomiya-Tate N. Physicochemical characterization of the G51D mutation of α-synuclein that is responsible for its severe cytotoxicity.
Neurosci Lett 2021;
760:136077. [PMID:
34161822 DOI:
10.1016/j.neulet.2021.136077]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022]
Abstract
Fibril formation and aggregation of α-synuclein are important for the pathogenesis of neurodegenerative disorders including Parkinson's disease. In familial Parkinson's disease, the G51D mutation of α-synuclein causes severe symptoms and rapid progression. α-Synuclein, an intrinsically disordered protein, was shown to adopt an α-helical tetrameric state that resists fibrillation and aggregation. Here, we isolated the stable dimeric state of recombinant wild-type (WT) α-synuclein and G51D α-synuclein protein. Using circular dichroism spectroscopy, we determined that the α-synuclein dimer and monomer structures were unfolded. The WT α-synuclein dimer was more resistant to fibril formation than the monomer. However, the fibril formation rate of the G51D α-synuclein dimer was similar to that of the G51D α-synuclein monomer. The fibril morphology and properties of the G51D α-synuclein monomer were different from those of the WT α-synuclein monomer and dimer and G51D α-synuclein dimer. Additionally, G51D α-synuclein monomer fibrils were more cytotoxic than other fibrils. Our findings indicate that the structural differences between G51D α-synuclein monomer fibrils and other fibrils are critically responsible for its severe neurotoxicity in familial Parkinson's disease.
Collapse