1
|
Lauria G, Ceccanti C, Lo Piccolo E, El Horri H, Guidi L, Lawson T, Landi M. "Metabolight": how light spectra shape plant growth, development and metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14587. [PMID: 39482564 DOI: 10.1111/ppl.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 11/03/2024]
Abstract
Innovations in light technologies (i.e. Light Emitting Diodes; LED) and cover films with specific optical features (e.g. photo-selective, light-extracting) have revolutionized crop production in both protected environments and open fields. The possibility to modulate the light spectra, thereby enriching/depleting cultivated plants with targeted wavebands has attracted increasing interest from both basic and applicative research. Indeed, the light environment not only influences plant biomass production but is also a pivotal factor in shaping plant size, development and metabolism. In the last decade, the strict interdependence between specific wavebands and the accumulation of targeted secondary metabolites has been exploited to improve the quality of horticultural products. Innovation in LED lighting has also marked the improvement of streetlamp illumination, thereby posing new questions about the possible influence of light pollution on urban tree metabolism. In this case, it is urgent and challenging to propose new, less-impacting solutions by modulating streetlamp spectra in order to preserve the ecosystem services provided by urban trees. The present review critically summarizes the main recent findings related to the morpho-anatomical, physiological, and biochemical changes induced by light spectra management via different techniques in crops as well as in non-cultivated species. This review explores the following topics: (1) plant growth in monochromatic environments, (2) the use of greenhouse light supplementation, (3) the application of covering films with different properties, and (4) the drawbacks of streetlamp illumination on urban trees. Additionally, it proposes new perspectives offered by in planta photomodulation.
Collapse
Affiliation(s)
- Giulia Lauria
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Costanza Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Ermes Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Hafsa El Horri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Ozfidan-Konakci C, Yildiztugay E, Arikan-Abdulveli B, Alp-Turgut FN, Baslak C, Yıldırım M. The characterization of plant derived-carbon dots and its responses on chlorophyll a fluorescence kinetics, radical accumulation in guard cells, cellular redox state and antioxidant system in chromium stressed-Lactuca sativa. CHEMOSPHERE 2024; 356:141937. [PMID: 38599327 DOI: 10.1016/j.chemosphere.2024.141937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Based on their chemical structure and catalytic features, carbon dots (CDs) demonstrate great advantages for agricultural systems. The improvements in growth, photosynthesis, nutrient assimilation and resistance are provided by CDs treatments under control or adverse conditions. However, there is no data on how CDs can enhance the tolerance against chromium toxicity on gas exchange, photosynthetic machinery and ROS-based membrane functionality. The present study was conducted to evaluate the impacts of the different concentrations of orange peel derived-carbon dots (50-100-200-500 mg L-1 CD) on growth, chlorophyll fluorescence, phenomenological fluxes between photosystems, photosynthetic performance, ROS accumulation and antioxidant system under chromium stress (Cr, 100 μM chromium (VI) oxide) in Lactuca sativa. CDs removed the Cr-reduced changes in growth (RGR), water content (RWC) and proline (Pro) content. Compared to stress, CD exposures caused an alleviation in carbon assimilation rate, stomatal conductance, transpiration rate, carboxylation efficiency, chlorophyll fluorescence (Fv/Fm) and potential photochemical efficiency (Fv/Fo). Cr toxicity disrupted the energy fluxes (ABS/RC, TRo/RC, ETo/RC and DIo/RC), quantum yields and, efficiency (ΨEo and φRo), dissipation of energy (DIo/RC) and performance index (PIABS and PItotal). An amelioration in these parameters was provided by CD addition to Cr-applied plants. Stressed plants had high activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), which could not prevent the increase of H2O2 and lipid peroxidation (TBARS content). While all CDs induced SOD and catalase (CAT) in response to stress, POX and enzyme/non-enzymes related to ascorbate-glutathione (AsA-GSH) cycle (APX, monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), the contents of AsA and, GSH) were activated by 50-100-200 mg L-1 CD. CDs were able to protect the AsA regeneration, GSH/GSSG and GSH redox status. The decreases in H2O2 content might be attributed to the increased activity of glutathione peroxidase (GPX). Therefore, all CD applications minimized the Cr stress-based disturbances (TBARS content) by controlling ROS accumulation, antioxidant system and photosynthetic machinery. In conclusion, CDs have the potential to be used as a biocompatible inducer in removing the adverse effects of Cr stress in lettuce plants.
Collapse
Affiliation(s)
- Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Busra Arikan-Abdulveli
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Canan Baslak
- Department of Chemistry, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Murat Yıldırım
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| |
Collapse
|
3
|
Patel J, Khatri K, Khandwal D, Gupta NK, Choudhary B, Hapani D, Koshiya J, Syed SN, Phillips DW, Jones HD, Mishra A. Modulation of physio-biochemical and photosynthesis parameters by overexpressing SbPIP2 gene improved abiotic stress tolerance of transgenic tobacco. PHYSIOLOGIA PLANTARUM 2024; 176:e14384. [PMID: 38859697 DOI: 10.1111/ppl.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
The present study aims to explore the potential of a plasma-membrane localized PIP2-type aquaporin protein sourced from the halophyte Salicornia brachiata to alleviate salinity and water deficit stress tolerance in a model plant through transgenic intervention. Transgenic plants overexpressing SbPIP2 gene showed improved physio-biochemical parameters like increased osmolytes (proline, total sugar, and amino acids), antioxidants (polyphenols), pigments and membrane stability under salinity and drought stresses compared to control plants [wild type (WT) and vector control (VC) plants]. Multivariate statistical analysis showed that, under water and salinity stresses, osmolytes, antioxidants and pigments were correlated with SbPIP2-overexpressing (SbPIP2-OE) plants treated with salinity and water deficit stress, suggesting their involvement in stress tolerance. As aquaporins are also involved in CO2 transport, SbPIP2-OE plants showed enhanced photosynthesis performance than wild type upon salinity and drought stresses. Photosynthetic gas exchange (net CO2 assimilation rate, PSII efficiency, ETR, and non-photochemical quenching) were significantly higher in SbPIP2-OE plants compared to control plants (wild type and vector control plants) under both unstressed and stressed conditions. The higher quantum yield for reduction of end electron acceptors at the PSI acceptor side [Φ( R0 )] in SbPIP2-OE plants compared to control plants under abiotic stresses indicates a continued PSI functioning, leading to retained electron transport rate, higher carbon assimilation, and less ROS-mediated injuries. In conclusion, the SbPIP2 gene functionally validated in the present study could be a potential candidate for engineering abiotic stress resilience in important crops.
Collapse
Affiliation(s)
- Jaykumar Patel
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kusum Khatri
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Deepesh Khandwal
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nirmala Kumari Gupta
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Babita Choudhary
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Hapani
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Jignasha Koshiya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Saif Najam Syed
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dylan Wyn Phillips
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Huw Dylan Jones
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Avinash Mishra
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Shah G, Bhatt U, Singh H, Kumar D, Sharma J, Strasser RJ, Soni V. Ecotoxicological assessment of cigarette butts on morphology and photosynthetic potential of Azolla pinnata. BMC PLANT BIOLOGY 2024; 24:300. [PMID: 38637728 PMCID: PMC11061998 DOI: 10.1186/s12870-024-04991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Cigarette butts (CBs) have become the most ubiquitous form of anthropogenic litter globally. CBs contain various hazardous chemicals that persist in the environment for longer period. These substances are susceptible to leaching into the environment through waterways. The recent study was aimed to evaluate the effects of disposed CBs on the growth and development of Azolla pinnata, an aquatic plant. It was found that after a span of 6 days, the root length, surface area, number of fronds, and photosynthetic efficacy of plant were considerably diminished on the exposure of CBs (concentrations 0 to 40). The exposure of CBs led to a decrease in the FM, FV/F0, and φP0, in contrast, the φD0 increased in response to CBs concentration. Moreover, ABS/CSm, TR0/CSm, and ET0/CSm displayed a negative correlation with CB-induced chemical stress. The performance indices were also decreased (p-value ≤ 0.05) at the highest concentration of CBs. LD50 and LD90 represent the lethal dose, obtained value for LD50 is 20.30 CBs and LD90 is 35.26 CBs through probit analysis. Our results demonstrate that the CBs cause irreversible damage of photosynthetic machinery in plants and also reflect the efficacy of chlorophyll a fluorescence analysis and JIP test for assessing the toxicity of CBs in plants.
Collapse
Affiliation(s)
- Garishma Shah
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Upma Bhatt
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Hanwant Singh
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Deepak Kumar
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Jyotshana Sharma
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Reto J Strasser
- Plant Bioenergetics Laboratory, University of Geneva, Jussy, 1254, Geneva, Switzerland
| | - Vineet Soni
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001.
| |
Collapse
|
5
|
Dias MDS, da Silva FDA, Fernandes PD, Farias CHDA, de Lima RF, da Silva MDFC, Lima VRDN, de Lima AM, de Lacerda CN, Reis LS, de Souza WBB, da Silva AAR, Arruda TFDL. Beneficial Effect of Exogenously Applied Calcium Pyruvate in Alleviating Water Deficit in Sugarcane as Assessed by Chlorophyll a Fluorescence Technique. PLANTS (BASEL, SWITZERLAND) 2024; 13:434. [PMID: 38337967 PMCID: PMC10856894 DOI: 10.3390/plants13030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The growing demand for food production has led to an increase in agricultural areas, including many with low and irregular rainfall, stressing the importance of studies aimed at mitigating the harmful effects of water stress. From this perspective, the objective of this study was to evaluate calcium pyruvate as an attenuator of water deficit on chlorophyll a fluorescence of five sugarcane genotypes. The experiment was conducted in a plant nursery where three management strategies (E1-full irrigation, E2-water deficit with the application of 30 mM calcium pyruvate, and E3-water deficit without the application of calcium pyruvate) and five sugarcane genotypes (RB863129, RB92579, RB962962, RB021754, and RB041443) were tested, distributed in randomized blocks, in a 3 × 5 factorial design with three replications. There is dissimilarity in the fluorescence parameters and photosynthetic pigments of the RB863129 genotype in relation to those of the RB041443, RB96262, RB021754, and RB92579 genotypes. Foliar application of calcium pyruvate alleviates the effects of water deficit on the fluorescence parameters of chlorophyll a and photosynthetic pigments in sugarcane, without interaction with the genotypes. However, subsequent validation tests will be necessary to test and validate the adoption of this technology under field conditions.
Collapse
Affiliation(s)
- Mirandy dos Santos Dias
- Unidade Acadêmica de Engenharia Agrícola—UAEA, Centro de Tecnologia e Recursos Naturais—CTRN, Universidade Federal de Campina Grande–UFCG, Campus Campina Grande, Campina Grande 58428-830, PB, Brazil; (F.d.A.d.S.); (P.D.F.); (C.H.d.A.F.); (R.F.d.L.); (M.d.F.C.d.S.); (V.R.d.N.L.); (A.M.d.L.); (C.N.d.L.); (W.B.B.d.S.); (A.A.R.d.S.); (T.F.d.L.A.)
| | - Francisco de Assis da Silva
- Unidade Acadêmica de Engenharia Agrícola—UAEA, Centro de Tecnologia e Recursos Naturais—CTRN, Universidade Federal de Campina Grande–UFCG, Campus Campina Grande, Campina Grande 58428-830, PB, Brazil; (F.d.A.d.S.); (P.D.F.); (C.H.d.A.F.); (R.F.d.L.); (M.d.F.C.d.S.); (V.R.d.N.L.); (A.M.d.L.); (C.N.d.L.); (W.B.B.d.S.); (A.A.R.d.S.); (T.F.d.L.A.)
| | - Pedro Dantas Fernandes
- Unidade Acadêmica de Engenharia Agrícola—UAEA, Centro de Tecnologia e Recursos Naturais—CTRN, Universidade Federal de Campina Grande–UFCG, Campus Campina Grande, Campina Grande 58428-830, PB, Brazil; (F.d.A.d.S.); (P.D.F.); (C.H.d.A.F.); (R.F.d.L.); (M.d.F.C.d.S.); (V.R.d.N.L.); (A.M.d.L.); (C.N.d.L.); (W.B.B.d.S.); (A.A.R.d.S.); (T.F.d.L.A.)
| | - Carlos Henrique de Azevedo Farias
- Unidade Acadêmica de Engenharia Agrícola—UAEA, Centro de Tecnologia e Recursos Naturais—CTRN, Universidade Federal de Campina Grande–UFCG, Campus Campina Grande, Campina Grande 58428-830, PB, Brazil; (F.d.A.d.S.); (P.D.F.); (C.H.d.A.F.); (R.F.d.L.); (M.d.F.C.d.S.); (V.R.d.N.L.); (A.M.d.L.); (C.N.d.L.); (W.B.B.d.S.); (A.A.R.d.S.); (T.F.d.L.A.)
| | - Robson Felipe de Lima
- Unidade Acadêmica de Engenharia Agrícola—UAEA, Centro de Tecnologia e Recursos Naturais—CTRN, Universidade Federal de Campina Grande–UFCG, Campus Campina Grande, Campina Grande 58428-830, PB, Brazil; (F.d.A.d.S.); (P.D.F.); (C.H.d.A.F.); (R.F.d.L.); (M.d.F.C.d.S.); (V.R.d.N.L.); (A.M.d.L.); (C.N.d.L.); (W.B.B.d.S.); (A.A.R.d.S.); (T.F.d.L.A.)
| | - Maria de Fátima Caetano da Silva
- Unidade Acadêmica de Engenharia Agrícola—UAEA, Centro de Tecnologia e Recursos Naturais—CTRN, Universidade Federal de Campina Grande–UFCG, Campus Campina Grande, Campina Grande 58428-830, PB, Brazil; (F.d.A.d.S.); (P.D.F.); (C.H.d.A.F.); (R.F.d.L.); (M.d.F.C.d.S.); (V.R.d.N.L.); (A.M.d.L.); (C.N.d.L.); (W.B.B.d.S.); (A.A.R.d.S.); (T.F.d.L.A.)
| | - Vitória Régia do Nascimento Lima
- Unidade Acadêmica de Engenharia Agrícola—UAEA, Centro de Tecnologia e Recursos Naturais—CTRN, Universidade Federal de Campina Grande–UFCG, Campus Campina Grande, Campina Grande 58428-830, PB, Brazil; (F.d.A.d.S.); (P.D.F.); (C.H.d.A.F.); (R.F.d.L.); (M.d.F.C.d.S.); (V.R.d.N.L.); (A.M.d.L.); (C.N.d.L.); (W.B.B.d.S.); (A.A.R.d.S.); (T.F.d.L.A.)
| | - Andrezza Maia de Lima
- Unidade Acadêmica de Engenharia Agrícola—UAEA, Centro de Tecnologia e Recursos Naturais—CTRN, Universidade Federal de Campina Grande–UFCG, Campus Campina Grande, Campina Grande 58428-830, PB, Brazil; (F.d.A.d.S.); (P.D.F.); (C.H.d.A.F.); (R.F.d.L.); (M.d.F.C.d.S.); (V.R.d.N.L.); (A.M.d.L.); (C.N.d.L.); (W.B.B.d.S.); (A.A.R.d.S.); (T.F.d.L.A.)
| | - Cassiano Nogueira de Lacerda
- Unidade Acadêmica de Engenharia Agrícola—UAEA, Centro de Tecnologia e Recursos Naturais—CTRN, Universidade Federal de Campina Grande–UFCG, Campus Campina Grande, Campina Grande 58428-830, PB, Brazil; (F.d.A.d.S.); (P.D.F.); (C.H.d.A.F.); (R.F.d.L.); (M.d.F.C.d.S.); (V.R.d.N.L.); (A.M.d.L.); (C.N.d.L.); (W.B.B.d.S.); (A.A.R.d.S.); (T.F.d.L.A.)
| | - Lígia Sampaio Reis
- Campus de Engenharias e Ciências Agrárias—CECA, Universidade Federal de Alagoas—UFAL, Rio Largo 57100-000, AL, Brazil;
| | - Weslley Bruno Belo de Souza
- Unidade Acadêmica de Engenharia Agrícola—UAEA, Centro de Tecnologia e Recursos Naturais—CTRN, Universidade Federal de Campina Grande–UFCG, Campus Campina Grande, Campina Grande 58428-830, PB, Brazil; (F.d.A.d.S.); (P.D.F.); (C.H.d.A.F.); (R.F.d.L.); (M.d.F.C.d.S.); (V.R.d.N.L.); (A.M.d.L.); (C.N.d.L.); (W.B.B.d.S.); (A.A.R.d.S.); (T.F.d.L.A.)
| | - André Alisson Rodrigues da Silva
- Unidade Acadêmica de Engenharia Agrícola—UAEA, Centro de Tecnologia e Recursos Naturais—CTRN, Universidade Federal de Campina Grande–UFCG, Campus Campina Grande, Campina Grande 58428-830, PB, Brazil; (F.d.A.d.S.); (P.D.F.); (C.H.d.A.F.); (R.F.d.L.); (M.d.F.C.d.S.); (V.R.d.N.L.); (A.M.d.L.); (C.N.d.L.); (W.B.B.d.S.); (A.A.R.d.S.); (T.F.d.L.A.)
| | - Thiago Filipe de Lima Arruda
- Unidade Acadêmica de Engenharia Agrícola—UAEA, Centro de Tecnologia e Recursos Naturais—CTRN, Universidade Federal de Campina Grande–UFCG, Campus Campina Grande, Campina Grande 58428-830, PB, Brazil; (F.d.A.d.S.); (P.D.F.); (C.H.d.A.F.); (R.F.d.L.); (M.d.F.C.d.S.); (V.R.d.N.L.); (A.M.d.L.); (C.N.d.L.); (W.B.B.d.S.); (A.A.R.d.S.); (T.F.d.L.A.)
| |
Collapse
|
6
|
Zuo G, Huo J, Yang X, Mei W, Zhang R, Khan A, Feng N, Zheng D. Photosynthetic mechanisms underlying NaCl-induced salinity tolerance in rice (Oryza sativa). BMC PLANT BIOLOGY 2024; 24:41. [PMID: 38195408 PMCID: PMC10777521 DOI: 10.1186/s12870-024-04723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Salinity stress is an environmental constraint that normally develops concurrently under field conditions, resulting in drastic limitation of rice plant growth and grain productivity. The objective of this study was to explore the alleviating effects of NaCl pre-treatment on rice seedlings as well as the salt tolerance mechanisms by evaluating morph-physiological traits. RESULTS Variety Huanghuazhan, either soaked in distilled water or 25 mg/L Prohexadione calcium (Pro-Ca), were first hardened with varying concentrations of NaCl solutions (0 and 50 mM NaCl), and then subjected to varying degrees of salt stress (0 and 100 mM NaCl), indicated by S0, S1, S2 and S3, respectively. Growth analysis suggested that NaCl-pretreatment improved the root/shoot ratio in water-soaked rice plant at DAP 0. Data related to the reaction center density, photosynthetic electron transport efficiency, trapping efficiency were compared before (CK) using performance Index (PIabs). Compared to S2 (Pro-Ca-S2) treatment, PIabs did not show any difference with plants pre-treated with NaCl (S3 or Pro-Ca-S3). Rather than PIabs, significant difference was found in photosynthetic electron transport efficiency (ΨEo). The ΨEo value in Pro-S2 was significantly lowered as compared to Pro-S3 treatment at DAP 7, and the decrease rate was about 6.5%. Correlation analysis indicated leaf PIabs was weak correlated with plant biomass while the quantum yield for reduction of the PSI end electron acceptors, trapped energy flux per reaction center and PSII antenna size displayed strong positive correlation with biomass. Additional analysis revealed that 100 mM NaCl significantly reduced leaf linear electron flux under low-light conditions, regardless of whether seedlings had been pre-treated with 50 mM NaCl or not. CONCLUSIONS NaCl-induced salt tolerance was related to the robust photosynthetic machinery.
Collapse
Affiliation(s)
- Guanqiang Zuo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- College of Natural Resources and Environment, Northwest A&F University, Xianyang, 712100, China
| | - Jingxin Huo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
| | - Xiaohui Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
| | - Wanqi Mei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
| | - Rui Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
| | - Aaqil Khan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| |
Collapse
|
7
|
Bharati R, Gupta A, Novy P, Severová L, Šrédl K, Žiarovská J, Fernández-Cusimamani E. Synthetic polyploid induction influences morphological, physiological, and photosynthetic characteristics in Melissa officinalis L. FRONTIERS IN PLANT SCIENCE 2023; 14:1332428. [PMID: 38155852 PMCID: PMC10752996 DOI: 10.3389/fpls.2023.1332428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Melissa officinalis L., a well-known herb with diverse industrial and ethnopharmacological properties. Although, there has been a significant lack in the breeding attempts of this invaluable herb. This study aimed to enhance the agronomical traits of M. officinalis through in vitro polyploidization. Nodal segments were micropropagated and subjected to oryzalin treatment at concentrations of 20, 40, and 60 mM for 24 and 48 hours. Flow cytometry, chromosome counting, and stomatal characteristics were employed to confirm the ploidy level of the surviving plants. The survival rate of the treated explants decreased exponentially with increasing oryzalin concentration and duration. The highest polyploid induction rate (8%) was achieved with 40 mM oryzalin treatment for 24 hours. The induced tetraploid plants exhibited vigorous growth, characterized by longer shoots, larger leaves, and a higher leaf count. Chlorophyll content and fluorescence parameters elucidated disparities in photosynthetic performance between diploid and tetraploid genotypes. Tetraploid plants demonstrated a 75% increase in average essential oil yield, attributed to the significantly larger size of peltate trichomes. Analysis of essential oil composition in diploid and tetraploid plants indicated the presence of three major components: geranial, neral, and citronellal. While citronellal remained consistent, geranial and neral increased by 11.06% and 9.49%, respectively, in the tetraploid population. This effective methodology, utilizing oryzalin as an anti-mitotic agent for polyploid induction in M. officinalis, resulted in a polyploid genotype with superior morpho-physiological traits. The polyploid lemon balm generated through this method has the potential to meet commercial demands and contribute significantly to the improvement of lemon balm cultivation.
Collapse
Affiliation(s)
- Rohit Bharati
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavel Novy
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Lucie Severová
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Karel Šrédl
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jana Žiarovská
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
8
|
Bhatt U, Sharma S, Kalaji HM, Strasser RJ, Chomontowski C, Soni V. Sunlight-induced repair of photosystem II in moss Semibarbula orientalis under submergence stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:777-791. [PMID: 37696295 DOI: 10.1071/fp23073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023]
Abstract
Lower plants such as bryophytes often encounter submergence stress, even in low precipitation conditions. Our study aimed to understand the mechanism of submergence tolerance to withstand this frequent stress in moss (Semibarbula orientalis ) during the day and at night. These findings emphasise that light plays a crucial role in photoreactivation of PSII in S. orientalis , which indicates that light not only fuels photosynthesis but also aids in repairing the photosynthetic machinery in plants. Submergence negatively affects photosynthesis parameters such as specific and phenomenological fluxes, density of functional PSII reaction centres (RC/CS), photochemical and non-photochemical quenching (Kp and Kn), quantum yields (ϕP0 , ϕE0 , ϕD0 ), primary and secondary photochemistry, performance indices (PIcs and PIabs), etc. Excessive antenna size caused photoinhibition at the PSII acceptor side, reducing the plastoquinone pool through the formation of PSII triplets and reactive oxygen species (ROS). This ROS-induced protein and PSII damage triggered the initiation of the repair cycle in presence of sunlight, eventually leading to the resumption of PSII activity. However, ROS production was regulated by antioxidants like superoxide dismutase (SOD) and catalase (CAT) activity. The rapid recovery of RS/CS observed specifically under sunlight conditions emphasises the vital role of light in enabling the assembly of essential units, such as the D1 protein of PSII, during stress in S. orientalis . Overall, light is instrumental in restoring the photosynthetic potential in S. orientalis growing under submergence stress. Additionally, it was observed that plants subjected to submergence stress during daylight hours rapidly recover their photosynthetic performance. However, submergence stress during the night requires a comparatively longer period for the restoration of photosynthesis in the moss S. orientalis .
Collapse
Affiliation(s)
- Upma Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Shubhangani Sharma
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Hazem M Kalaji
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Aleja Hrabska 3, Raszyn 05-090, Poland; and Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Reto J Strasser
- Plant Bioenergetics Laboratory, University of Geneva, Jussy 1254, Switzerland
| | - Chrystian Chomontowski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| |
Collapse
|
9
|
Singh H, Kumar D, Soni V. Impact of mercury on photosynthetic performance of Lemna minor: a chlorophyll fluorescence analysis. Sci Rep 2023; 13:12181. [PMID: 37500693 PMCID: PMC10374571 DOI: 10.1038/s41598-023-39297-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
The purpose of this study was to evaluate the effectiveness of chlorophyll fluorescence analysis in detecting the effects of mercury (Hg) treatment in duckweed species Lemna minor. The results showed that Hg treatment (ranging from 0.0 to 0.4 µM) significantly impacted the plant's photosynthetic ability, with a decrease in variable chlorophyll fluorescence, energy fluxes, density of reaction centers, and performance index. Complete inhibition of electron transport was observed in plants treated with high Hg concentrations, and the quantum yield of primary photochemistry and the ratio of dissipated energy to absorption both decreased with increasing Hg concentrations. Performance Index (PI) was significantly affected by the Hg concentrations, reaching zero in plants treated with the highest Hg concentration. Overall, JIP analysis was found to be an effective tool for detecting deleterious effects of Hg in plants.
Collapse
Affiliation(s)
- Hanwant Singh
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Deepak Kumar
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
10
|
El-Mejjaouy Y, Belmrhar L, Zeroual Y, Dumont B, Mercatoris B, Oukarroum A. PCA-based detection of phosphorous deficiency in wheat plants using prompt fluorescence and 820 nm modulated reflection signals. PLoS One 2023; 18:e0286046. [PMID: 37224124 DOI: 10.1371/journal.pone.0286046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023] Open
Abstract
Phosphorus deficiency induces biochemical and morphological changes which affect crop yield and production. Prompt fluorescence signal characterizes the PSII activity and electron transport from PSII to PSI, while the modulated light reflection at 820 (MR 820) nm investigates the redox state of photosystem I (PSI) and plastocyanin (PC). Therefore, combining information from modulated reflection at 820 nm with chlorophyll a fluorescence can potentially provide a more complete understanding of the photosynthetic process and integrating other plant physiological measurements may help to increase the accuracy of detecting the phosphorus deficiency in wheat leaves. In our study, we combined the chlorophyll a fluorescence and MR 820 signals to study the response of wheat plants to phosphorus deficiency as indirect tools for phosphorus plant status characterization. In addition, we studied the changes in chlorophyll content index, stomatal conductance (gs), root morphology, and biomass of wheat plants. The results showed an alteration in the electron transport chain as a specific response to P deficiency in the I-P phase during the reduction of the acceptor side of PSI. Furthermore, P deficiency increased parameters related to the energy fluxes per reaction centers, namely ETo/RC, REo/RC, ABS/RC, and DIo/RC. P deficiency increased the values of MRmin and MRmax and decreased νred, which implies that the reduction of PSI and PC became slower as the phosphorus decreased. The principal component analysis of the modulated reflection and chlorophyll a fluorescence parameters, with the integration of the growth parameters as supplementary variables, accounted for over 71% of the total variance in our phosphorus data using two components and provided a reliable information on PSII and PSI photochemistry under P deficiency.
Collapse
Affiliation(s)
- Yousra El-Mejjaouy
- AgoBioSciences, Plant Stress Physiology Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Laila Belmrhar
- AgoBioSciences, Plant Stress Physiology Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Youssef Zeroual
- AgoBioSciences, Plant Stress Physiology Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Benjamin Dumont
- Pant Sciences / Crop Science, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Benoît Mercatoris
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Abdallah Oukarroum
- AgoBioSciences, Plant Stress Physiology Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- High Throughput Multidisciplinary Research Laboratory, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
11
|
Fedeli R, Alexandrov D, Celletti S, Nafikova E, Loppi S. Biochar improves the performance of Avena sativa L. grown in gasoline-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28791-28802. [PMID: 36401703 PMCID: PMC9995545 DOI: 10.1007/s11356-022-24127-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/05/2022] [Indexed: 04/16/2023]
Abstract
This study investigated the effect of soil contamination by different concentrations of gasoline on oat (Avena sativa L.) and tested the effect of biochar supply to the polluted soils on the performance of oat plants. Oat seeds were sowed in contaminated soils with different concentrations of gasoline: 0% (control), 1%, 2%, 6%, and 10% (v/w), and grown for 2 weeks. Germination, fresh weight, root and stem length, photosynthetic parameters (i.e., chlorophyll content, PIABS, FV/FM, and NDVI), and total antioxidant power were analyzed. The results showed a remarkable negative effect on almost all the investigated parameters starting from the gasoline concentration of 6%. Based on these results, a new experiment was run by adding 5% (w/w) biochar (a carbon-rich byproduct of wood biomass pyrolysis) to the 6% and 10% polluted soils to test whether adding biochar had a beneficial effect on oat performance. The results showed that biochar supply greatly reduced the negative effects caused by gasoline on all the investigated parameters.
Collapse
Affiliation(s)
- Riccardo Fedeli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Dmitriy Alexandrov
- Ufa State Aviation Technical University, Karla Marksa Str., 12, 450000 Ufa, Russia
| | - Silvia Celletti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Elvira Nafikova
- Ufa State Aviation Technical University, Karla Marksa Str., 12, 450000 Ufa, Russia
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
- BAT Center - Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80138 Naples, Italy
| |
Collapse
|
12
|
Kumar A, Singh N, Kaur A, Joshi R. Sneak-peek into the chlorophyll content, antioxidant activity, targeted and non-targeted UHPLC-QTOF LC/MS metabolomic fingerprints of pulse microgreens grown under different photoperiod regimes. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
13
|
Cun Z, Xu XZ, Zhang JY, Shuang SP, Wu HM, An TX, Chen JW. Responses of photosystem to long-term light stress in a typically shade-tolerant species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2023; 13:1095726. [PMID: 36714733 PMCID: PMC9878349 DOI: 10.3389/fpls.2022.1095726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Photosynthetic adaptive strategies vary with the growth irradiance. The potential photosynthetic adaptive strategies of shade-tolerant species Panax notoginseng (Burkill) F. H. Chen to long-term high light and low light remains unclear. Photosynthetic performance, photosynthesis-related pigments, leaves anatomical characteristics and antioxidant enzyme activities were comparatively determined in P. notoginseng grown under different light regimes. The thickness of the upper epidermis, palisade tissue, and lower epidermis were declined with increasing growth irradiance. Low-light-grown leaves were declined in transpiration rate (Tr) and stomatal conductance (Cond), but intercellular CO2 concentration (C i) and net photosynthesis rate (P n) had opposite trends. The maximum photo-oxidation P 700 + (P m) was greatly reduced in 29.8% full sunlight (FL) plants; The maximum quantum yield of photosystem II (F v/F m) in 0.2% FL plants was significantly lowest. Electron transport, thermal dissipation, and the effective quantum yield of PSI [Y(I)] and PSII [Y(II)] were declined in low-light-grown plants compared with high-light-grown P. notoginseng. The minimum value of non-regulated energy dissipation of PSII [Y(NO)] was recorded in 0.2% FL P. notoginseng. OJIP kinetic curve showed that relative variable fluorescence at J-phase (V J) and the ratio of variable fluorescent F K occupying the F J-F O amplitude (W k) were significantly increased in 0.2% FL plants. However, the increase in W k was lower than the increase in V J. In conclusion, PSI photoinhibition is the underlying sensitivity of the typically shade-tolerant species P. notoginseng to high light, and the photodamage to PSII acceptor side might cause the typically shade-tolerant plants to be unsuitable for long-term low light stress.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Xiang-Zeng Xu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
- Research Center for Collection and Utilization of Tropical Crop Resources, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Tong-Xin An
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
14
|
Dhaka A, Raj S, Githala CK, Chand Mali S, Trivedi R. Balanites aegyptiaca leaf extract-mediated synthesis of silver nanoparticles and their catalytic dye degradation and antifungal efficacy. Front Bioeng Biotechnol 2022; 10:977101. [PMID: 36267455 PMCID: PMC9576921 DOI: 10.3389/fbioe.2022.977101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
This study describes the biosynthesis of silver nanoparticles (AgNPs) using Balanites aegyptiaca (B. aegyptiaca) leaf extract. The biosynthesized AgNPs were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy with (SEM-EDS). The AgNPs showed an average size of 10–20 nm, spherical shape, and crystalline nature. The application of these synthesized AgNPs to dye degradation showed that the AgNPs removed the two organic pollutants methylene blue (MB, 93.47%) and congo red (CR, (78.57%). In vitro investigation of the antifungal activity of the AgNPs against Fusarium oxysporum, a phytopathogenic fungus, showed a maximum percent radial growth inhibition of 82.00 ± 1.00% and a spore percent inhibition of 73.66 ± 3.94 for 150 μg/ml of biosynthesized AgNPs.
Collapse
Affiliation(s)
| | - Shani Raj
- *Correspondence: Shani Raj, ; Rohini Trivedi,
| | | | | | | |
Collapse
|
15
|
Li C, Mur LA, Wang Q, Hou X, Zhao C, Chen Z, Wu J, Guo Q. ROS scavenging and ion homeostasis is required for the adaptation of halophyte Karelinia caspia to high salinity. FRONTIERS IN PLANT SCIENCE 2022; 13:979956. [PMID: 36262663 PMCID: PMC9574326 DOI: 10.3389/fpls.2022.979956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
The halophyte Karelinia caspia has not only fodder and medical value but also can remediate saline-alkali soils. Our previous study showed that salt-secreting by salt glands is one of main adaptive strategies of K. caspia under high salinity. However, ROS scavenging, ion homeostasis, and photosynthetic characteristics responses to high salinity remain unclear in K. caspia. Here, physio-biochemical responses and gene expression associated with ROS scavenging and ions transport were tested in K. caspia subjected to 100-400 mM NaCl for 7 days. Results showed that both antioxidant enzymes (SOD, APX) activities and non-enzymatic antioxidants (chlorogenic acid, α-tocopherol, flavonoids, polyamines) contents were significantly enhanced, accompanied by up-regulating the related enzyme and non-enzymatic antioxidant synthesis gene (KcCu/Zn-SOD, KcAPX6, KcHCT, KcHPT1, Kcγ-TMT, KcF3H, KcSAMS and KcSMS) expression with increasing concentrations of NaCl. These responses are beneficial for removing excess ROS to maintain a stable level of H2O2 and O2 - without lipid peroxidation in the K. caspia response to high salt. Meanwhile, up-regulating expression of KcSOS1/2/3, KcNHX1, and KcAVP was linked to Na+ compartmentalization into vacuoles or excretion through salt glands in K. caspia. Notably, salt can improve the function of PSII that facilitate net photosynthetic rates, which is helpful to growing normally in high saline. Overall, the findings suggested that ROS scavenging systems and Na+/K+ transport synergistically contributed to redox equilibrium, ion homeostasis, and the enhancement of PSII function, thereby conferring high salt tolerance.
Collapse
Affiliation(s)
- Cui Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Luis A.J. Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- College of Software, Shanxi Agricultural University, Taigu, China
| | - Qinghai Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xincun Hou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunqiao Zhao
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhimin Chen
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Juying Wu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qiang Guo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
16
|
Githala CK, Raj S, Dhaka A, Mali SC, Trivedi R. Phyto-fabrication of silver nanoparticles and their catalytic dye degradation and antifungal efficacy. Front Chem 2022; 10:994721. [PMID: 36226117 PMCID: PMC9548708 DOI: 10.3389/fchem.2022.994721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) and their potent application against dye degradation and phytopathogens are attracting many scientists to nanotechnology. An attempt was made to synthesize silver nanoparticles using Plantago ovata leaf extract and test their effectiveness in removing organic dyes and antifungal activity. In the present study, stable AgNPs were synthesized from 0.1 mM AgNO3 and authenticated by observing the color change from yellow to red-brown, which was confirmed with wavelength UV-Vis spectrophotometer detection. The crystalline nature of the particles was characterized by x-ray diffraction (XRD) patterns. Furthermore, the AgNPs were characterized by high-resolution transmission electron microscope and scanning electron microscope investigations. Atomic force microscopy (AFM) and Raman spectra were also used to confirm the size and structure of the synthesized AgNPs. The elemental analysis and functional groups responsible for the reduction of AgNPs were analyzed by electron dispersive spectroscopy and fourier transform infra-red spectroscopy Fourier transforms infrared, respectively. A new biological approach was taken by breaking down organic dyes such as methylene blue and congo red. The AgNPs effectively inhibit the fungal growth of Alternaria alternata. This could be a significant achievement in the fight against many dynamic pathogens and reduce dye contamination from waste water.
Collapse
Affiliation(s)
| | - Shani Raj
- *Correspondence: Shani Raj, ; Rohini Trivedi,
| | | | | | | |
Collapse
|
17
|
Synthesis of silver nanoparticles employing Polyalthia longifolia leaf extract and their in vitro antifungal activity against phytopathogen. Biochem Biophys Rep 2022; 31:101320. [PMID: 36032398 PMCID: PMC9398913 DOI: 10.1016/j.bbrep.2022.101320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
The P. longifolia mediated silver (PL-AgNPs) nanoparticles are very stable and efficient. UV–Vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX) were used to characterize the produced AgNPs. UV–Vis analysis showed a characteristic peak at 435 nm corresponding to surface plasmon resonance. The synthesis process was spectrophotometrically optimized for various parameters. After optimization, highly stable AgNPs were prepared using 3.0 ml of P. longifolia leaf extract, pH 7.0, 1.0 mM AgNO3, and 60 °C. The zeta potential was measured by DLS, which showed −20.8 mV and the PDI value was 5.42. TEM and SEM analysis shows a spherical shape of the synthesized nanoparticles, and the size was measured between 10 and 40 nm. EDX analysis showed intense peaks from silver and oxygen and small peaks from various metal atoms such as Na, P, S and Al indicating their presence in trace amounts. The average size of the PL-AgNPs was 14 nm. The phytochemical analysis shows that the presence of alkaloids, essential oils and saponins seems to be responsible for the synthesis of nanoparticles. PL-AgNPs were further investigated for their antifungal activity against Alternaria alternata. The minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and effect of nanoparticles on cytomorphology of A. alternata have also been reported. Biosynthesized nanoparticles have proven to be inexpensive, environmentally friendly, stable, easily reproducible, and highly effective against plant-pathogenic fungi. Green synthesis of AgNPs using aqueous leaf extract of Polyalthia longifolia. Characterization using UV–vis, DLS, XRD, TEM, SEM, EDX. Optimization of AgNPs at different Temperature, pH, Concentration and Time. Nanoparticles were stable for more than 5 months. The antifungal activity of the AgNPs against A. alternata were studied.
Collapse
|
18
|
Sharma S, Bhatt U, Sharma J, Kalaji H, Mojski J, Soni V. Ultrastructure, adaptability, and alleviation mechanisms of photosynthetic apparatus in plants under waterlogging: A review. PHOTOSYNTHETICA 2022; 60:430-444. [PMID: 39650110 PMCID: PMC11558593 DOI: 10.32615/ps.2022.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2024]
Abstract
Photosynthesis is a process highly sensitive to various abiotic and biotic stresses in plants. Among them, the major abiotic stress, waterlogging, affects the crop's growth and productivity. Under waterlogging, the photosynthetic apparatus of plants was destroyed. Waterlogging reduced chlorophyll content and the net photosynthetic rate. Therefore, this updated review summarized the effect of waterlogging on chloroplast ultrastructure, photosynthetic characteristics, and chlorophyll fluorescence attributes of plant species. By studying various research papers, we found that intercellular concentration of available carbon dioxide in mesophyll cells, assimilation of carbon, and the net photosynthetic ratio declined under waterlogging. The chlorophyll fluorescence efficiency of plants decreased under waterlogging. Thus, the study of photosynthesis in plants under waterlogging should be done with respect to changing climate. Moreover, the recognition of photosynthetic characteristics present in tolerant species will be beneficial for designing the waterlogging-tolerant crop plant in changing environments.
Collapse
Affiliation(s)
- S. Sharma
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, 31300 Udaipur, India
| | - U. Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, 31300 Udaipur, India
| | - J. Sharma
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, 31300 Udaipur, India
| | - H.M. Kalaji
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Aleja Hrabska 3, 05-090 Raszyn, Poland
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - J. Mojski
- Twoj Swiat Jacek Mojski, Stefana Okrzei 39, 21-400 Lukow, Poland
- Fundacja Zielona Infrastuktura, Wiatraki 3E, 21-400 Lukow, Poland
| | - V. Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, 31300 Udaipur, India
| |
Collapse
|
19
|
Toro-Tobón G, Alvarez-Flórez F, Mariño-Blanco HD, Melgarejo LM. Foliar Functional Traits of Resource Island-Forming Nurse Tree Species from a Semi-Arid Ecosystem of La Guajira, Colombia. PLANTS 2022; 11:plants11131723. [PMID: 35807675 PMCID: PMC9269082 DOI: 10.3390/plants11131723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
Semi-arid environments characterized by low rainfall are subject to soil desertification processes. These environments have heterogeneous landscapes with patches of vegetation known as resource islands that are generated by nurse species that delay the desertification process because they increase the availability of water and nutrients in the soil. The study aimed to characterize some foliar physiological, biochemical, and anatomical traits of three nurse tree species that form resource islands in the semi-arid environment of La Guajira, Colombia, i.e., Haematoxylum brasiletto, Pithecellobium dulce, and Pereskia guamacho. The results showed that H. brasiletto and P. dulce have sclerophyllous strategies, are thin (0.2 and 0.23 mm, respectively), and have a high leaf dry matter content (364.8 and 437.47 mg/g). Moreover, both species have a high photochemical performance, reaching Fv/Fm values of 0.84 and 0.82 and PIABS values of 5.84 and 4.42, respectively. These results agree with the OJIP curves and JIP parameters. Both species had a compact leaf with a similar dorsiventral mesophyll. On the other hand, P. guamacho has a typical succulent, equifacial leaf with a 97.78% relative water content and 0.81 mm thickness. This species had the lowest Fv/Fm (0.73) and PIABS (1.16) values and OJIP curve but had the highest energy dissipation value (DIo/RC).
Collapse
|
20
|
Performance of chlorophyll a fluorescence parameters in Lemna minor under heavy metal stress induced by various concentration of copper. Sci Rep 2022; 12:10620. [PMID: 35739228 PMCID: PMC9226353 DOI: 10.1038/s41598-022-14985-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
The objective of the present investigation was to understand the efficacy of chlorophyll fluorescence analysis and to identify the specific photosynthetic parameters for early and rapid detection of Cu-induced HM-stress in plants. Aquatic angiosperm Lemna minor was exposed to various concentrations (0-40 µM) of Cu. We observed that the FV/FO (Efficiency of the water-splitting complex on the donor side of PSII), quantum yield for electron transport, and quantum yield of primary photochemistry were decreased however, dissipated quantum yield was increased with Cu concentration. ABS/CSM, TRO/CSM, ETO/CSM and maximum quantum yield were displayed the dose-response relationship under Cu stress. Performance indexes were increased initially due to the beneficial effects of Cu at lower concentration while decreased significantly (p ≤ 0.05) at highest concentration of Cu. The outcomes of the present research revealed that the ChlF analysis is very sensitive tool that can be used to determine the toxicity of heavy metals in plants.
Collapse
|
21
|
Peng L, Xie D, Li C, Guo Q, Chen C, Wang Q. Effects of Graphene Oxide on Atrazine Phytotoxicity Effects of Graphene Oxide on Photosynthetic Response of Iris Pseudacorus to Atrazine Stress and Accumulation of Atrazine in the Plant. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:1033-1038. [PMID: 35426516 DOI: 10.1007/s00128-022-03500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
To evaluate combined effects of co-existed pesticides and nanomaterials on aquatic plants, the toxicity of herbicide atrazine (ATZ) on Iris pseudacorus in the presence and absence of Graphene oxide (GO) was investigated using chlorophyll a fluorescence transients. Results showed that GO reduced ATZ accumulation in plant. ATZ or ATZ combined with GO mainly blocked electron transport beyond QA at PSII as indicated by the sharp rise of the J-step level of fluorescence rise kinetics. The pronounced increase in Fm and the loss of I-step were observed when ATZ was at 2.0 mg·L- 1 implying the damage on the oxygen evolution complex and PSI. GO at environmentally relevant concentration did not exhibit significant photosynthetic inhibitory effects on I. pseudacorus. GO at 1.0 mg·L- 1 promoted photosynthesis of I. pseudacorus under ATZ stress at 2.0 mg·L- 1. These result indicated that the presence of GO alleviated the photosynthesis inhibition by ATZ at high levels.
Collapse
Affiliation(s)
- Lei Peng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 410004, Changsha, China
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Dongyu Xie
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 410004, Changsha, China
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Cui Li
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Qiang Guo
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Chuansheng Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Qinghai Wang
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China.
| |
Collapse
|
22
|
Influence of Mo and Fe on Photosynthetic and Nitrogenase Activities of Nitrogen-Fixing Cyanobacteria under Nitrogen Starvation. Cells 2022; 11:cells11050904. [PMID: 35269526 PMCID: PMC8909559 DOI: 10.3390/cells11050904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/01/2023] Open
Abstract
The potential of cyanobacteria to perform a variety of distinct roles vital for the biosphere, including nutrient cycling and environmental detoxification, drives interest in studying their biodiversity. Increasing soil erosion and the overuse of chemical fertilizers are global problems in developed countries. The option might be to switch to organic farming, which entails largely the use of biofertilisers. Cyanobacteria are prokaryotic, photosynthetic organisms with considerable potential, within agrobiotechnology, to produce biofertilisers. They contribute significantly to plant drought resistance and nitrogen enrichment in the soil. This study sought, isolated, and investigated nitrogen-fixing cyanobacterial strains in rice fields, and evaluated the effect of Mo and Fe on photosynthetic and nitrogenase activities under nitrogen starvation. Cyanobacterial isolates, isolated from rice paddies in Kazakhstan, were identified as Trichormus variabilis K-31 (MZ079356), Cylindrospermum badium J-8 (MZ079357), Nostoc sp. J-14 (MZ079360), Oscillatoria brevis SH-12 (MZ090011), and Tolypothrix tenuis J-1 (MZ079361). The study of the influence of various concentrations of Mo and Fe on photosynthetic and nitrogenase activities under conditions of nitrogen starvation revealed the optimal concentrations of metals that have a stimulating effect on the studied parameters.
Collapse
|
23
|
Cun Z, Wu HM, Zhang JY, Shuang SP, Hong J, Chen JW. Responses of Linear and Cyclic Electron Flow to Nitrogen Stress in an N-Sensitive Species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2022; 13:796931. [PMID: 35242152 PMCID: PMC8885595 DOI: 10.3389/fpls.2022.796931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of N-stress-driven photoinhibition of the photosystem I (PSI) and photosystem II (PSII) is still unclear in the N-sensitive species such as Panax notoginseng, and thus the role of electron transport in PSII and PSI photoinhibition needs to be further understood. We comparatively analyzed photosystem activity, photosynthetic rate, excitation energy distribution, electron transport, OJIP kinetic curve, P700 dark reduction, and antioxidant enzyme activities in low N (LN), moderate N (MN), and high N (HN) leaves treated with linear electron flow (LEF) inhibitor [3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU)] and cyclic electron flow (CEF) inhibitor (methyl viologen, MV). The results showed that the increased application of N fertilizer significantly enhance leaf N contents and specific leaf N (SLN). Net photosynthetic rate (P n) was lower in HN and LN plants than in MN ones. Maximum photochemistry efficiency of PSII (F v/F m), maximum photo-oxidation P700+ (P m), electron transport rate of PSI (ETRI), electron transport rate of PSII (ETRII), and plastoquinone (PQ) pool size were lower in the LN plants. More importantly, K phase and CEF were higher in the LN plants. Additionally, there was not a significant difference in the activity of antioxidant enzyme between the MV- and H2O-treated plants. The results obtained suggest that the lower LEF leads to the hindrance of the formation of ΔpH and ATP in LN plants, thereby damaging the donor side of the PSII oxygen-evolving complex (OEC). The over-reduction of PSI acceptor side is the main cause of PSI photoinhibition under LN condition. Higher CEF and antioxidant enzyme activity not only protected PSI from photodamage but also slowed down the damage rate of PSII in P. notoginseng grown under LN.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jin-Yan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jie Hong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
24
|
Bhatt U, Sharma S, Kumar D, Soni V. Impact of streetlights on physiology, biochemistry and diversity of urban bryophyte: a case study on moss Semibarbula orientalis. JOURNAL OF URBAN ECOLOGY 2022. [DOI: 10.1093/jue/juac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
The use of artificial light at night is a very basic symbol of urbanization and has distorted many ecological, biochemical and physiological phenomena in plants, which have settled for millions of years in the biological system. Continuous illumination of light significantly alters the circadian rhythm of all organisms. The present study was focused to understand the effects of continuous light (CL) on the biochemistry and physiology of moss Semibarbula orientalis. It was observed that H2O2 accumulation and activities of chlorophyllase, phenylalanine ammonia-lyase, superoxide dismutase and catalase enzymes significantly enhanced in plants growing under streetlights. Similarly, plants under CL showed a marked reduction in photosynthetic performance. Specific fluxes (ABS/RC, TR/RC, ET/RC), phenomenological fluxes (ABS/CS, TR/CS, ET/CS), density of photosystem-II, quantum yield of photosynthesis and chlorophyll concentration markedly declined in plants growing under streetlights. Depletion in performance indices (PIcs and PIabs) and primary and secondary photochemistry [PHIO/(1 − PHIO) and PSIO/(1 − PSIO)] were also noticed, which indicated failure of adaptive strategies of photosystem-II, resulting in the loss of biomass of S. orientalis. Biomass decline is also shown by a decrease in coverage, which reduces the bryophyte species richness of the chosen locations. Present studies clearly indicate that artificial light at night drastically affects the moss population. The reduction in the dominating species, S. orientalis, improves species evenness and results in a slow growth rate.
Collapse
Affiliation(s)
- Upma Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University , Udaipur 313001, Rajasthan, India
| | - Shubhangani Sharma
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University , Udaipur 313001, Rajasthan, India
| | - Deepak Kumar
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University , Udaipur 313001, Rajasthan, India
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University , Udaipur 313001, Rajasthan, India
| |
Collapse
|
25
|
Kumar D, Singh H, Bhatt U, Soni V. Effect of continuous light on antioxidant activity, lipid peroxidation, proline and chlorophyll content in Vigna radiata L. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:145-154. [PMID: 34813420 DOI: 10.1071/fp21226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/31/2021] [Indexed: 05/28/2023]
Abstract
Longer photoperiod in form of continuous light (24-h photoperiod without dark interruption) can alter the various physiological and biochemical processes of the plant. This study aimed to evaluate the effects of continuous light on various biochemical parameters associated with the growth and development of Vigna radiata L. (mung bean). The findings showed that leaf size and chlorophyll content of seedlings grown under continuous light were significantly greater than control plants subjected to 12h light/12h dark (12/12h). The activity of antioxidant enzymes superoxide dismutase (SOD, 30.81%), catalase (CAT, 16.86%), guaiacol peroxidase (GPOD, 12.27%), malondialdehyde, (MDA, 39.31) and proline (14.81%) were notably higher in 24/0h light period than 12/12h light period grown seedling at an early stage (on Day 6) while they were constant at the later stage of development. Increased activity of amylase and invertase reveals higher assimilation and consumption of photosynthetic products. This study revealed that plants were stressed at first. However, they gradually became acclimated to continuous light and efficiently used the excess light in carbon assimilation.
Collapse
Affiliation(s)
- Deepak Kumar
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Hanwant Singh
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Upma Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
26
|
Sharma S, Bhatt U, Sharma J, Darkalt A, Mojski J, Soni V. Effect of different waterlogging periods on biochemistry, growth, and chlorophyll a fluorescence of Arachis hypogaea L. FRONTIERS IN PLANT SCIENCE 2022; 13:1006258. [PMID: 36438100 PMCID: PMC9686000 DOI: 10.3389/fpls.2022.1006258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 05/16/2023]
Abstract
Peanut is among the main oil crops in India with huge economic importance. The unpredictable rainy season during the growing time of peanuts causes waterlogging in peanut fields. Waterlogging triggers major environmental limitations that negatively affect the growth, physiology, and development of peanuts. Thus, the export and production of peanuts are severely affected by waterlogging. Therefore, the understanding of metabolic mechanisms under waterlogging is important to future water-stress tolerance breeding in peanuts. This study aimed to evaluate how peanuts responded to various waterlogging conditions in terms of their development, metabolic processes, and chlorophyll fluorescence characteristics. The evaluations were carried out at different stages of peanut variety DH-86 treated with waterlogging. The peanut plants were subjected to different waterlogging periods of 20, 40, 60, 80, and 100 days. The growth parameters including total dry mass, total leaf area, and total leaves number were calculated in all treatments. The phenomenological and specific energy fluxes and maximum photosystem II efficiency (FV/Fm) were also determined. The measurements were done statistically using PCA, G-Means clustering, and correlation analysis to explore the interaction between different physiological parameters. The waterlogging for 100 days caused a significant reduction in the total number of leaves, dry mass, and total leaf area. The most sensitive parameters are specific and phenomenological energy fluxes and Fv/Fm, which notably decreased as waterlogging duration increased. The results indicated the growth and physiological performance of the peanut cv. DH-86 was affected significantly due to waterlogging and the interaction between all these parameters in waterlogging. This research focused on how peanuts respond to waterlogging stress and provides the basis for future plant breeding efforts to improve peanut waterlogging tolerance, especially in rainy regions. This will improve the sustainability of the entire peanut industry.
Collapse
Affiliation(s)
- Shubhangani Sharma
- Plant Bioenergetics and Biotechnology Laboratory, Mohanlal Sukhadia University, Udaipur, India
| | - Upma Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Mohanlal Sukhadia University, Udaipur, India
| | - Jyotshana Sharma
- Plant Bioenergetics and Biotechnology Laboratory, Mohanlal Sukhadia University, Udaipur, India
| | - Ahmad Darkalt
- Department of Renewable Natural Resources & Ecology, Engineering Agricultural Faculty, Aleppo University, Aleppo, Syria
| | - Jacek Mojski
- Twój Swiat Jacek Mojski, Lukow, Poland
- Fundacja Zielona Infrastruktura, Lukow, Poland
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Mohanlal Sukhadia University, Udaipur, India
- *Correspondence: Vineet Soni
| |
Collapse
|
27
|
Fan J, Zhou D, Chen C, Wu J, Wu H. Reprogramming the metabolism of Synechocystis PCC 6803 by regulating the plastoquinone biosynthesis. Synth Syst Biotechnol 2021; 6:351-359. [PMID: 34754966 PMCID: PMC8554343 DOI: 10.1016/j.synbio.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/05/2022] Open
Abstract
Cyanobacteria can utilize CO2 or even N2 to produce a variety of high value-added products efficiently. Plastoquinone (PQ) is an important electron carrier in both of the photosynthetic and respiratory electron transport chain. Although the content of PQ, as well as their redox state, have an important effect on physiology and metabolism, there are relatively few studies on the synthesis of PQ and its related metabolic regulation mechanism in photosynthetic microorganisms. In this study, the strategies of overexpression of Geranyl diphosphate: 4-hydroxybenzoate geranyltransferase (lepgt) and addition of 4-hydroxybenzoate (4-HB) as the quinone ring precursor were adopted to regulate the biosynthesis of PQ in Synechocystis PCC 6803. Combined with the analysis the photosystem activity, respiration rate and metabolic components, we found the changes of intracellular PQ reprogrammed the metabolism of Synechocystis PCC 6803. The results showed that the overexpression of lepgt reduced PQ content dramatically, by 22.18%. Interestingly, both of the photosynthesis and respiration rate were enhanced. In addition, the intracellular lipid and protein contents were significantly increased. Whereas, the addition of low concentrations of 4-HB enhanced the biosynthesis of PQ, and the intracellular PQ contents were increased by 14.76%-70.86% in different conditions. Addition of 4-HB can regulate the photosystem efficiency and respiration and reprogram the metabolism of Synechocystis PCC 6803 efficiently. In a word, regulating the PQ biosynthesis provided a novel idea for promoting the reprogramming the physiology and metabolism of Synechocystis.
Collapse
Affiliation(s)
- Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Dongqing Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Cheng Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ju Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, PR China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China
- Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
28
|
Singh H, Raj S, Kumar D, Sharma S, Bhatt U, Kalaji HM, Wróbel J, Soni V. Tolerance and decolorization potential of duckweed (Lemna gibba) to C.I. Basic Green 4. Sci Rep 2021; 11:10889. [PMID: 34035402 PMCID: PMC8149414 DOI: 10.1038/s41598-021-90369-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
With growing human culture and industrialization, many pollutants are being introduced into aquatic ecosystems. In recent years, dyes have become a major water pollutant used in the manufacture of paints and other production purposes. In this research, the potential of duckweed (Lemna gibba) plant was investigated spectrophotometrically as an obvious bioagent for the biological decolorization of the organic dye C.I. Basic Green 4 (Malachite Green, BG4). Photosynthetic efficiency analysis showed that the photosynthetic apparatus of L. gibba is very tolerant to BG4. Significant induction of reactive oxygen species (ROS) scavenging enzymes was observed after 24h of biodecolorization process in L. gibba treated with 15 and 30 mg/l BG4. The experimental results showed that L. gibba has a strong ability to extract BG4 from contaminated water and the best results were obtained at 25–30°C and pH 8.0. We conclude that duckweed L. gibba can be used as a potent decolorization organism for BG4.
Collapse
Affiliation(s)
- Hanwant Singh
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Shani Raj
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Deepak Kumar
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Shubhangani Sharma
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Upma Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, 17 Słowackiego Street, 71-434, Szczecin, Poland.
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
29
|
Costa ÉLG, Farnese FDS, de Oliveira TC, Rosa M, Rodrigues AA, Resende EC, Januario AH, Silva FG. Combinations of Blue and Red LEDs Increase the Morphophysiological Performance and Furanocoumarin Production of Brosimum gaudichaudii Trécul in vitro. FRONTIERS IN PLANT SCIENCE 2021; 12:680545. [PMID: 34367206 PMCID: PMC8334558 DOI: 10.3389/fpls.2021.680545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/22/2021] [Indexed: 05/14/2023]
Abstract
Brosimum gaudichaudii is a plant species with medicinal relevance due to its furanocoumarin accumulation. The accumulation of these compounds in the root promotes predatory extractivism, which threatens the conservation of the species. In addition, little is known about the conditions for culturing of this species in vitro. The present study aimed to investigate how the application of different spectra of LEDs (white, blue, red, and combinations of blue and red at 1:1 and 3:1 ratios) can impact the morphophysiological and biochemical characteristics of B. gaudichaudii under different in vitro conditions. To evaluate the production of furanocoumarins in its leaves, which are easy-to-collect perennial organs, we cultured nodal segments in 50-mL tubes with MS medium under 100 μmol m-2 s-1 light and a photoperiod of 16 h for 50 days. We then submitted the seedlings biometric, anatomical, biochemical, and physiological evaluations. The different spectral qualities influenced several characteristics of the seedlings. Plants grown under red light showed greater stem elongation and larger and thinner leaves, strategies aimed at capturing a higher ratio of radiant energy. Exposure to the blue/red ratio of 1:1 induced increases in the concentration of the furanocoumarin psoralen, probably due to the diversion of carbon from primary metabolism, which resulted in lower growth. Cultivation under blue light or blue:red light at 3:1 triggered anatomical and physiological changes that led to higher production of secondary metabolites in the leaves, and at the 3:1 ratio, the seedlings also had a high growth rate. These results highlight the fundamental role of light in stimulating the production of secondary metabolites, which has important implications for the production of compounds of interest and indirect consequences for the conservation of B. gaudichaudii.
Collapse
Affiliation(s)
- Érica Letícia Gomes Costa
- Departamento de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rio Verde, Brazil
| | - Fernanda dos Santos Farnese
- Laboratório de Fisiologia Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rio Verde, Brazil
| | - Thales Caetano de Oliveira
- Departamento de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rio Verde, Brazil
| | - Márcio Rosa
- Faculdade de Agronomia da Universidade de Rio Verde, Rio Verde, Brazil
| | - Arthur Almeida Rodrigues
- Departamento de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rio Verde, Brazil
| | - Erika Crispim Resende
- Departamento de Biomoléculas, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Iporá, Brazil
| | - Ana Helena Januario
- Núcleo de Pesquisa em Ciências Exatas e Tencológicas, Universidade de Franca, São Paulo, Brazil
| | - Fabiano Guimarães Silva
- Departamento de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rio Verde, Brazil
- *Correspondence: Fabiano Guimarães Silva
| |
Collapse
|
30
|
Rodrigues AM, Carrasquinho I, António C. Primary Metabolite Adjustments Associated With Pinewood Nematode Resistance in Pinus pinaster. FRONTIERS IN PLANT SCIENCE 2021; 12:777681. [PMID: 34950168 PMCID: PMC8691400 DOI: 10.3389/fpls.2021.777681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
The pinewood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of the pine wilt disease (PWD) and represents one of the major threats to conifer forests. The detection of the PWN in Portugal, associated with Pinus pinaster, increased the concern of its spread to European forests. Despite its susceptibility to PWD, genetic variability found among P. pinaster populations has been associated with heritable PWD resistance. Understanding the mechanisms underlying tree resistance constitutes a valuable resource for breeding programs toward more resilient forest plantations. This study investigated changes in anatomy, chlorophyll a fluorescence (ChlF), and primary metabolism in susceptible and resistant P. pinaster half-sib plants, after PWN inoculation. Susceptible plants showed a general shutdown of central metabolism, osmolyte accumulation, photosynthetic inhibition, and a decrease in the plant water status. The ChlF transient rise (OJIP curve) revealed the appearance of L- and K-bands, indicators of environmental stress. In contrast, resistant plants revealed a regulated defense response and were able to restrict PWN migration and cellular damage. Furthermore, the accumulation of γ-aminobutyric acid (GABA) and succinate suggested a role of these metabolites in PWD resistance and the possible activation of the GABA shunt. Altogether, these results provide new insights to the role of primary metabolism in PWD resistance and in the selection of resistant phenotypes for disease mitigation.
Collapse
Affiliation(s)
- Ana M. Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabel Carrasquinho
- Instituto Nacional Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: Carla António,
| |
Collapse
|