1
|
Hemdan M, Ali MA, Doghish AS, Mageed SSA, Elazab IM, Khalil MM, Mabrouk M, Das DB, Amin AS. Innovations in Biosensor Technologies for Healthcare Diagnostics and Therapeutic Drug Monitoring: Applications, Recent Progress, and Future Research Challenges. SENSORS (BASEL, SWITZERLAND) 2024; 24:5143. [PMID: 39204840 PMCID: PMC11360123 DOI: 10.3390/s24165143] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review delves into the forefront of biosensor technologies and their critical roles in disease biomarker detection and therapeutic drug monitoring. It provides an in-depth analysis of various biosensor types and applications, including enzymatic sensors, immunosensors, and DNA sensors, elucidating their mechanisms and specific healthcare applications. The review highlights recent innovations such as integrating nanotechnology, developing wearable devices, and trends in miniaturisation, showcasing their transformative potential in healthcare. In addition, it addresses significant sensitivity, specificity, reproducibility, and data security challenges, proposing strategic solutions to overcome these obstacles. It is envisaged that it will inform strategic decision-making, drive technological innovation, and enhance global healthcare outcomes by synthesising multidisciplinary insights.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Mohamed A. Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Ibrahim M. Elazab
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Magdy M. Khalil
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt;
- School of Applied Health Sciences, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Giza 12622, Egypt;
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Alaa S. Amin
- Chemistry Department, Faculty of Science, Benha University, Benha 13511, Egypt;
| |
Collapse
|
2
|
Wu Y, Zhang J, Zhu R, Zhang H, Li D, Li H, Tang H, Chen L, Peng X, Xu X, Zhao K. Mechanistic Study of Novel Dipeptidyl Peptidase IV Inhibitory Peptides from Goat's Milk Based on Peptidomics and In Silico Analysis. Foods 2024; 13:1194. [PMID: 38672866 PMCID: PMC11049645 DOI: 10.3390/foods13081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Two novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (YPF and LLLP) were discovered from goat milk protein by peptidomics, in silico analysis, and in vitro assessment. A total of 698 peptides (<23 AA) were successfully identified by LC-MS/MS from goat milk hydrolysates (hydrolyzed by papaian plus proteinase K). Then, 105 potential DPP-IV inhibitory peptides were screened using PeptideRanker, the ToxinPred tool, Libdock, iDPPIV-SCM, and sequence characteristics. After ADME, physicochemical property evaluation, and a literature search, 12 candidates were efficiently selected and synthesized in vitro for functional validation. Two peptides (YPF and LLLP) were found to exert relatively high in vitro chemical system (IC50 = 368.54 ± 12.97 μM and 213.99 ± 0.64 μM) and in situ (IC50 = 159.46 ± 17.40 μM and 154.96 ± 8.41 μM) DPP-IV inhibitory capacities, and their inhibitory mechanisms were further explored by molecular docking. Our study showed that the formation of strong non-bonding interactions with the core residues from the pocket of DPP-IV (such as ARG358, PHE357, GLU205, TYR662, TYR547, and TYR666) might primarily account for the DPP-IV inhibitory activity of two identified peptides. Overall, the two novel DPP-IV inhibitory peptides rapidly identified in this study can be used as functional food ingredients for the control of diabetes.
Collapse
Affiliation(s)
- Yulong Wu
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (Y.W.); (R.Z.)
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Jin Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Ruikai Zhu
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (Y.W.); (R.Z.)
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Hong Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Dapeng Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
- College of Life Science, Yantai University, Yantai 264005, China;
| | - Huanhuan Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Honggang Tang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Lihong Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai 264005, China;
| | - Xianrong Xu
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (Y.W.); (R.Z.)
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| |
Collapse
|
3
|
Zhu K, Zheng Z, Dai Z. Identification of antifreeze peptides in shrimp byproducts autolysate using peptidomics and bioinformatics. Food Chem 2022; 383:132568. [PMID: 35255363 DOI: 10.1016/j.foodchem.2022.132568] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
In the present study, a novel method based on peptidomics and bioinformatic was applied to identification and characterization of antifreeze peptides (AFPs) from shrimp byproducts autolysate (SBPA). According to the results of in silico prediction and high peptide structural inflexibility, DEYEESGPGIVH and EQICINFCNEK were picked as potential AFP-1 and AFP-2, respectively. The outcomes of DSC determination indicated that TH of synthesized AFP-1 and AFP-2 (10 mg/mL) were 1.37 °C and 1.57 °C, respectively. Besides, 0.1 %-3 % AFPs showed significant cryoprotection in shrimp muscle after 3 and 6 freeze-thaw cycles, evidenced by higher SSP content, Ca2+-ATPase activity, sulfhydryl content and lower surface hydrophobicity than control; while the higher concentration resulted in better protection against freeze induced denaturation. Both AFP-1&2 showed favorable hydrogen bonding affinity which facilitated ice binding and ice crystal growth inhibition. This work could provide new ideals for identification and characterization of AFPs.
Collapse
Affiliation(s)
- Kai Zhu
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, 310012 Hangzhou, China; Institute of Seafood, Zhejiang Gongshang University, 310012 Hangzhou, China
| | - Zhenxiao Zheng
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, 310012 Hangzhou, China; Institute of Seafood, Zhejiang Gongshang University, 310012 Hangzhou, China
| | - Zhiyuan Dai
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, 310012 Hangzhou, China; Institute of Seafood, Zhejiang Gongshang University, 310012 Hangzhou, China.
| |
Collapse
|