1
|
Kriechbaum R, Kronlachner L, Limbeck A, Kopp J, Spadiut O. Towards a circular economy - Repurposing side streams from the potato processing industry by Chlorella vulgaris. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121796. [PMID: 39008925 DOI: 10.1016/j.jenvman.2024.121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/21/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Common wastewater treatment strategies in the food industry do not include efficient remediation strategies for nitrogen, phosphorous and organic carbon. Incorporating microalgae in water treatment plants is rising in popularity because of their high nutrient and trace element uptake driven by light. In this study, four different side streams from an Austrian potato processing company have been screened for their applicability of microalgal cultivation. The side streams were assessed for Chlorella vulgaris growth and their requirement of any additional pretreatment or media supplementation. One side stream specifically, called blanching water II, a stream generated by boiling the potatoes for ease of peeling, turned out very useful to cultivate Chlorella vulgaris and concomitantly remedy the wastewater. Compared to a state-of-the-art cultivation in BG11, cultivating Chlorella vulgaris in blanching water II led to a 45 % increase in specific growth rate of 1.29 day-1 and a 48% increase in biomass productivity to 294.6 mg/L/day, while all nitrogen and phosphate present in the side stream were metabolized. Overall, the results demonstrate that the water remediation process for blanching water II shows vast potential in regard to water purification and waste to value approaches.
Collapse
Affiliation(s)
- Ricarda Kriechbaum
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Wien, Austria
| | - Laura Kronlachner
- Institute of Chemical Technologies and Analytics, Research Division of Instrumental and Imaging Analytical Chemistry, Technische Universität Wien, Getreidemarkt 9, 1060, Wien, Austria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, Research Division of Instrumental and Imaging Analytical Chemistry, Technische Universität Wien, Getreidemarkt 9, 1060, Wien, Austria
| | - Julian Kopp
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Wien, Austria
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Wien, Austria.
| |
Collapse
|
2
|
Effect of pH on metabolite excretion and cell morphology of Euglena gracilis under dark, anaerobic conditions. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Phylogenetic analysis for identification of lipid enriched microalgae and optimization of extraction conditions for biodiesel production using response surface methodology tool. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Nagappan S, Devendran S, Tsai PC, Jayaraman H, Alagarsamy V, Pugazhendhi A, Ponnusamy VK. Metabolomics integrated with transcriptomics and proteomics: Evaluation of systems reaction to nitrogen deficiency stress in microalgae. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
A comparative analysis of biodiesel production and its properties from Leptolyngbya sp. BI-107 and Chlorella vulgaris under heat shock stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Daneshvar E, Antikainen L, Koutra E, Kornaros M, Bhatnagar A. Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: Treatment of wastewater and lipid extraction. BIORESOURCE TECHNOLOGY 2018; 255:104-110. [PMID: 29414154 DOI: 10.1016/j.biortech.2018.01.101] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 05/05/2023]
Abstract
In this study, feasibility of Chlorella vulgaris cultivation in pulp wastewater (PWW) diluted with lake water (LW) and aquaculture wastewater (AWW) was investigated. The best ratios of PWW and AWW (PAWW) viz., 80% PWW:20% AWW and 60% PWW:40% AWW were selected as microalgal culture medium. Algal growth was investigated with and without addition of macro and micronutrients to the cultivation medium. The highest dry algal weight was observed as 1.31 g/L in 60% PWW:40% AWW without adding micronutrients. Nutrients and organic compounds removal efficiencies by microalga were studied in PAWW. Protein, carbohydrate and lipid percentage of harvested microalga from wastewater and Bold's Basal Medium (BBM) solution were analyzed. Fatty acids analysis revealed that C16 and C18 are the major fatty acids in C. vulgaris cultivated in BBM and PAWW. The results of this study revealed that C. vulgaris is a potential candidate for PAWW treatment and lipid and carbohydrate accumulation.
Collapse
Affiliation(s)
- Ehsan Daneshvar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Laura Antikainen
- Environmental Technology, Savonia University of Applied Sciences, P.O. Box 6 (Microkatu 1 C), FI-70201 Kuopio, Finland
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
7
|
Lu Q, Chen P, Addy M, Zhang R, Deng X, Ma Y, Cheng Y, Hussain F, Chen C, Liu Y, Ruan R. Carbon-dependent alleviation of ammonia toxicity for algae cultivation and associated mechanisms exploration. BIORESOURCE TECHNOLOGY 2018; 249:99-107. [PMID: 29040866 DOI: 10.1016/j.biortech.2017.09.175] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Ammonia toxicity in wastewater is one of the factors that limit the application of algae technology in wastewater treatment. This work explored the correlation between carbon sources and ammonia assimilation and applied a glucose-assisted nitrogen starvation method to alleviate ammonia toxicity. In this study, ammonia toxicity to Chlorella sp. was observed when NH3-N concentration reached 28.03mM in artificial wastewater. Addition of alpha-ketoglutarate in wastewater promoted ammonia assimilation, but low utilization efficiency and high cost of alpha-ketoglutarate limits its application in wastewater treatment. Comparison of three common carbon sources, glucose, citric acid, and sodium bicarbonate, indicates that in terms of ammonia assimilation, glucose is the best carbon source. Experimental results suggest that organic carbon with good ability of generating energy and hydride donor may be critical to ammonia assimilation. Nitrogen starvation treatment assisted by glucose increased ammonia removal efficiencies and algal viabilities.
Collapse
Affiliation(s)
- Qian Lu
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Min Addy
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Renchuan Zhang
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Xiangyuan Deng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yanling Cheng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Fida Hussain
- Faculty of Science and Technology, Qurtuba University of Science and Technology, Peshawar, KP, Pakistan
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yuhuan Liu
- MOE Biomass Energy Research Center and State Key Laboratory of Food Science, Nanchang University, Nanchang 330000, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA; MOE Biomass Energy Research Center and State Key Laboratory of Food Science, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
8
|
Mashayekhi M, Sarrafzadeh M, Tavakoli O, Soltani N, Faramarzi M. Potential for biodiesel production and carbon capturing from Synechococcus Elongatus: An isolation and evaluation study. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Marudhupandi T, Sathishkumar R, Kumar TTA. Heterotrophic cultivation of Nannochloropsis salina for enhancing biomass and lipid production. ACTA ACUST UNITED AC 2016; 10:8-16. [PMID: 28352519 PMCID: PMC5040862 DOI: 10.1016/j.btre.2016.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/30/2015] [Accepted: 02/03/2016] [Indexed: 11/29/2022]
Abstract
Response surface methodology (RSM) was used to enhance the biomass and lipid content in Nannochloropsis salina due to its economic importance. Preliminary screening results revealed that the heterotrophically cultivated N. salina with various carbon and nitrogen sources yielded higher biomass (0.91 ± 0.0035 g/L) and lipid content (37.1 ± 0.49 mg/L) than that of the photoautotrophical cultivation (0.21 ± 0.009 g/L and 22.16 ± 0.27 mg/L). Significant sources that greatly influenced on biomass and lipid content of the alga were optimized through RSM. The medium consisting of glucose (7.959 g/L), sodium acetate (1.46 g/L), peptone (7.6 g/L) and sodium thiosulphate (1.05 g/L) was found to be the optimal concentration for heterotrophic cultivation by response optimizer. Confirmation experiment results for the RSM optimized concentration yielded the biomass of 1.85 g/L and total lipid content of 48.6 mg/L. In this study, we provide with a strategy for enhancing the biomass and lipid content in N. salina.
Collapse
Affiliation(s)
- Thangapandi Marudhupandi
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences Annamalai University, Parangipettai 608502, Tamil Nadu, India; Centre for Ocean Research, Sathyabama University, Jeppiaar Nagar, Chennai 600119, India
| | - Ramamoorthy Sathishkumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences Annamalai University, Parangipettai 608502, Tamil Nadu, India
| | - Thipramalai Thankappan Ajith Kumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences Annamalai University, Parangipettai 608502, Tamil Nadu, India; National Bureau of Fish Genetic Resources, Indian Council of Agriculture Research, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
10
|
Mumtaz MW, Mukhtar H, Dilawer UA, Hussain SM, Hussain M, Iqbal M, Adnan A, Nisar J. Biocatalytic transesterification of Eruca sativa oil for the production of biodiesel. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|