1
|
de Oliveira AJ, Ono MA, Suguiura IMDS, Zucareli C, Garcia EB, Olchanheski LR, Ono EYS. Potential of yeasts as biocontrol agents against Fusarium graminearum in vitro and on corn. J Appl Microbiol 2023; 134:lxad296. [PMID: 38049375 DOI: 10.1093/jambio/lxad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/06/2023]
Abstract
AIMS The antifungal effect of the yeast species Kluyveromyces marxianus, Meyerozyma caribbica, and Wickerhamomyces anomalus was evaluated against two Fusarium graminearum strains (FRS 26 and FSP 27) in vitro and on corn seeds. METHODS AND RESULTS The antifungal effect of the yeasts against F. graminearum was evaluated using scanning electron microscopy and extracellular chitinase and glucanase production to further elucidate the biocontrol mode of action. In addition, the germination percentage and vigor test were investigated after applying yeast on corn seeds. All the yeast strains inhibited fungal growth in vitro (57.4%-100.0%) and on corn seeds (18.9%-87.2%). In co-culture with antagonistic yeasts, F. graminearum showed collapsed hyphae and turgidity loss, which could be related to the ability of yeasts to produce chitinases and glucanases. The three yeasts did not affect the seed corn germination, and W. anomalus and M. caribbica increased corn seed growth parameters (germination percentage, shoot and root length, and shoot dry weight). CONCLUSION Meyerozyma caribbica and W. anomalus showed satisfactory F. graminearum growth inhibition rates and did not affect seed growth parameters. Further studies are required to evaluate the application of these yeasts to the crop in the field.
Collapse
Affiliation(s)
- Andressa Jacqueline de Oliveira
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Mario Augusto Ono
- Department of Pathological Sciences, State University of Londrina, P.O. box 10.011, 86057-970 Londrina, Paraná, Brazil
| | | | - Claudemir Zucareli
- Department of Agronomy, State University of Londrina, P.O. box 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Emanueli Bastos Garcia
- Department of Agronomy, State University of Londrina, P.O. box 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Luiz Ricardo Olchanheski
- Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, 84030-900 Ponta Grossa, Paraná, Brazil
| | - Elisabete Yurie Sataque Ono
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, 86057-970 Londrina, Paraná, Brazil
| |
Collapse
|
2
|
López AC, Giorgio EM, Vereschuk ML, Zapata PD, Luna MF, Alvarenga AE. Ilex paraguariensis Hosts Root-Trichoderma spp. with Plant-Growth-Promoting Traits: Characterization as Biological Control Agents and Biofertilizers. Curr Microbiol 2023; 80:120. [PMID: 36856863 DOI: 10.1007/s00284-023-03231-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
In this study, the effect of native plant-growth-promoting microorganisms (PGPM) as bio-inoculants was assessed as an alternative to improve Ilex paraguariensis Saint Hilaire growth in the nursery. Fourteen Trichoderma strains isolated from yerba mate roots were evaluated in vitro for their potential as biological control agents (BCA) and PGPM. The PGPM properties were evaluated through the strain's antagonistic activity against three fungal pathogens (Alternaria sp., F. oxysporum, and F. solani) plus the production of extracellular cell-wall-degrading enzymes such as chitinase, β-1,3-glucanase, and cellulase. These results were used to calculate different PGPM indices to select the strains with the optimal properties. Four Trichoderma strains: T. asperelloides LBM193, LBM204, LBM206, and Trichoderma sp. LBM202, were selected based on their indirect and direct PGPM properties used in an inoculation assay on yerba mate plants in greenhouse conditions. A highly significant positive effect of bio-inoculation with these Trichoderma strains was observed in one-year-old yerba mate seedlings. Inoculated plants exhibited a greater height, chlorophyll content, and dry weight than un-inoculated plants; those treated with LBM193 manifested the best results. Yerba mate plants treated with LBM202 exhibited a healthy appearance and were more vigorous, showing potential for biocontrol agent. In conclusion, yerba mate seedlings in the Misiones region were found to have a reservoir of Trichoderma species that increases the yield of this crop in the nursery and protects them from adverse biotic and abiotic agents.
Collapse
Affiliation(s)
- Ana C López
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina.
- CONICET, Godoy Cruz 2290, CABA, Argentina.
| | - Ernesto M Giorgio
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina
| | - Manuela L Vereschuk
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina
- CONICET, Godoy Cruz 2290, CABA, Argentina
| | - Pedro D Zapata
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina
- CONICET, Godoy Cruz 2290, CABA, Argentina
| | - María F Luna
- Centro de Investigación Y Desarrollo en Fermentaciones Industriales (CINDEFI), CCT-La Plata CONICET, CIC-PBA, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 115 Y 50 N° 227, C.P. 1900, Buenos Aires, Argentina
| | - Adriana E Alvarenga
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina
- CONICET, Godoy Cruz 2290, CABA, Argentina
| |
Collapse
|
3
|
Hassan EA, Mostafa YS, Alamri S, Hashem M, Nafady NA. Biosafe Management of Botrytis Grey Mold of Strawberry Fruit by Novel Bioagents. PLANTS (BASEL, SWITZERLAND) 2021; 10:2737. [PMID: 34961208 PMCID: PMC8706406 DOI: 10.3390/plants10122737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 05/17/2023]
Abstract
Recently, there have been urgent economic and scientific demands to decrease the use of chemical fungicides during the treatment of phytopathogens, due to their human health and environmental impacts. This study explored the biocontrol efficacy of novel and eco-friendly preen (uropygial) oil and endophytic Bacillus safensis in managing postharvest Botrytis grey mold in strawberry fruit. The preen oil (25 μL/mL) showed high antifungal activity against B. cinerea Str5 in terms of the reduction in the fungal radial growth (41.3%) and the fungal colony-forming units (28.6%) compared to the control. A new strain of Bacillus safensis B3 had a good potential to produce chitinase enzymes (3.69 ± 0.31 U/mL), hydrolytic lipase (10.65 ± 0.51 U/mL), and protease enzymes (13.28 ± 0.65 U/mL), which are responsible for the hydrolysis of the B. cinerea Str5 cell wall and, consequently, restrict fungal growth. The in vivo experiment on strawberry fruit showed that preen (uropygial) oil reduced the disease severity by 87.25%, while the endophytic bacteria B. safensis B3 reduced it by 86.52%. This study reports the efficiency of individually applied bioagents in the control of phytopathogenic fungi for the first time and, consequently, encourages their application as a new and innovative strategy for prospective agricultural technology and food safety.
Collapse
Affiliation(s)
- Elhagag A. Hassan
- Botany Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Yasser S. Mostafa
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 10255, Abha 61321, Saudi Arabia; (Y.S.M.); (S.A.)
| | - Saad Alamri
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 10255, Abha 61321, Saudi Arabia; (Y.S.M.); (S.A.)
| | - Mohamed Hashem
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 10255, Abha 61321, Saudi Arabia; (Y.S.M.); (S.A.)
| | - Nivien A. Nafady
- Botany Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| |
Collapse
|
4
|
Development of next-generation formulation against Fusarium oxysporum and unraveling bioactive antifungal metabolites of biocontrol agents. Sci Rep 2021; 11:22895. [PMID: 34819575 PMCID: PMC8613265 DOI: 10.1038/s41598-021-02284-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Biocontrol agents serve as a sustainable means of controlling wilt caused by the widespread plant pathogen, Fusarium oxysporum f. sp. lycopersici. The present study aimed to develop water dispersible granules (WDG) using response surface methodology (RSM) for Bacillus subtilis MTCC 2274 and Trichoderma harzianum MTCC 3928, and to compare their antifungal efficacy with other formulations. Further, characterization of the bioactive metabolites responsible for biocontrol was performed. A new microbial formulation, WDG, was developed in the present study with talcum powder (substrate), alginic acid (dispersing agent) and acacia gum (wetting agent) (suspensibility 82.23%; wetting time 2.5 min; dispersion time 10.08 min) that fulfilled the guidelines of Collaborative International Pesticides Analytical Council (CIPAC). In planta study demonstrated that WDG of B. subtilis showed maximum reduction in disease incidence (48%) followed by talc formulation of B. subtilis (44%) and WDG of T. harzianum (42%) with profound effect on plant growth promotion. B. subtilis and T. harzianum demonstrated protease (929 and 846 U ml−1 min−1), chitinase (33.69 and 154 U ml−1 min−1), and β-1,3-glucanase (12.69 and 21.47 U ml−1 min−1) activities. Culture filtrates of B. subtilis and T. harzianum exhibited significant inhibition against mycelial growth of pathogen. The compounds present in the culture filtrates were identified with GC–MS as fatty acids, alkanes, phenols, benzene, pyran derivatives etc. The major non-volatile compounds in bioactive antifungal fraction were identified as derivatives of morpholine and piperdine for T. harzianum and B. subtilis, respectively. The findings propose a multivariate biocontrol mechanism against phytopathogen by production of hydrolytic enzymes, volatile and non-volatile compounds, together with development of an efficient next-generation formulation.
Collapse
|
5
|
Jaafar NR, Khoiri NM, Ismail NF, Mahmood NAN, Abdul Murad AM, Abu Bakar FD, Mat Yajit NL, Illias RM. Functional characterisation and product specificity of Endo-β-1,3-glucanase from alkalophilic bacterium, Bacillus lehensis G1. Enzyme Microb Technol 2020; 140:109625. [DOI: 10.1016/j.enzmictec.2020.109625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
|
6
|
Maruyama CR, Bilesky-José N, de Lima R, Fraceto LF. Encapsulation of Trichoderma harzianum Preserves Enzymatic Activity and Enhances the Potential for Biological Control. Front Bioeng Biotechnol 2020; 8:225. [PMID: 32269991 PMCID: PMC7110528 DOI: 10.3389/fbioe.2020.00225] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/05/2020] [Indexed: 11/13/2022] Open
Abstract
Trichoderma harzianum is a biological control agent used against phytopathogens and biostimulation in agriculture. However, its efficacy can be affected by biotic and abiotic factors, and microencapsulation has been used to maximize the efficacy. The objective was to develop polymeric microparticles to encapsulate T. harzianum, to perform physicochemical characterization to evaluate its stability, to evaluate effects on the soil microbiota, antifungal activity in vitro and enzymatic activity. Size distribution of wet and dry microparticles was 2000 and 800 μm, respectively. Scanning electron microscopy showed spherical morphology and encapsulation of T. harzianum. Photostability assays showed that encapsulation protected the fungus against ultraviolet radiation. The evaluation of the microbiota showed that the proportion of denitrifying bacteria increased when compared to the control. The T. harzianum encapsulation showed an improvement in the chitinolytic and cellulosic activity. In vitro tests showed that encapsulated fungus were able to provide a greater control of S. sclerotiorum.
Collapse
Affiliation(s)
- Cintia Rodrigues Maruyama
- Environmental Nanotechnology Laboratory, Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Sorocaba, Brazil.,Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, Brazil
| | - Natália Bilesky-José
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, Brazil
| | - Renata de Lima
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, Brazil
| | - Leonardo Fernandes Fraceto
- Environmental Nanotechnology Laboratory, Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Sorocaba, Brazil
| |
Collapse
|
7
|
Lopes ARDO, Locatelli GO, Barbosa RDM, Lobo Junior M, Moura Mascarin G, Lamenha Luna Finkler C. Preparation, characterisation and cell viability of encapsulated Trichoderma asperellum in alginate beads. J Microencapsul 2020; 37:270-282. [DOI: 10.1080/02652048.2020.1729884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Gabriel Olivo Locatelli
- Academic Center of Vitória, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | - Murillo Lobo Junior
- Laboratory of Agricultural Microbiology, Brazilian Agricultural Research Corporation, Embrapa Rice and Beans, Santo Antônio de Goiás, Brazil
| | - Gabriel Moura Mascarin
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariúna, Brazil
| | | |
Collapse
|
8
|
Wonglom P, Ito SI, Sunpapao A. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100867] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Dario Rafael OH, Luis Fernándo ZG, Abraham PT, Pedro Alberto VL, Guadalupe GS, Pablo PJ. Production of chitosan-oligosaccharides by the chitin-hydrolytic system of Trichoderma harzianum and their antimicrobial and anticancer effects. Carbohydr Res 2019; 486:107836. [PMID: 31669568 DOI: 10.1016/j.carres.2019.107836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 01/31/2023]
Abstract
Chitosan-oligosaccharides (COS) are low-molecular weight chitosan derivatives with interesting clinical applications. The optimization of both COS production and purification is an important step in the design of an efficient production system and for the exploration of new COS applications. Trichoderma harzianum is an innocuous biocontrol agent that represents a novel biotechnological tool due to the production of extracellular enzymes, including those that produce a COS mixture. In this work, we propose different systems for the production of COS using the T. harzianum chitinolitic system. A complete qualitative and quantitative analysis of a partially purified COS mixture were performed. Also, an evaluation of the anticancer and antimicrobial effects of the COS mixture was carried out. Three chitosan variants (colloidal, solid and solution) and two fungus stages (spores and mycelia) were tested for COS production. The best system consisted of the interaction of the solid chitosan and the fungal spores, producing a COS mixture containing species from the monomer to the hexamer, in a concentration range of 7-238 mg/mL, according to chromatographic analysis. The proposed purification method isolated the monomer and the dimer from the COS mixture. Moreover, the COS mixture has an inhibitory effect on the growth of bacteria and changes the morphology of yeasts. As anticancer compounds, COS inhibited the growth of cervical cancer cells at concentration of 4 mg/mL and significantly reduced the survival rate of the cells. In conclusion, T. harzianum proved to be an efficient system for COS mixture production.
Collapse
Affiliation(s)
- Olicón-Hernández Dario Rafael
- Universidad Nacional Autónoma de México, Facultad de Medicina. Departamento de Bioquímica. Laboratorio 7. Circuito Interior s/n, Ciudad Universitaria CP, 04510, Ciudad de México, Mexico
| | - Zepeda-Giraud Luis Fernándo
- Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología. Laboratorio de bioquímica y biotecnología de hongos. Carpio y Plan de Ayala s/n. Santo Tomas, Miguel Hidalgo. CP, 11350, Ciudad de México, Mexico
| | - Pedroza-Torres Abraham
- Cátedra CONACYT-Instituto Nacional de Cancerología. Clínica de Cáncer Hereditario. Avenida San Fernando 22, Belisario Domínguez Secc XVI, CP, 14080, Ciudad de México, Mexico
| | - Vázquez-Landaverde Pedro Alberto
- Instituto Politécnico Nacional. Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Querétaro, Cerro Blanco 141. Colinas del Cimatario, CP 76090, Querétaro, Mexico
| | - Guerra-Sánchez Guadalupe
- Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología. Laboratorio de bioquímica y biotecnología de hongos. Carpio y Plan de Ayala s/n. Santo Tomas, Miguel Hidalgo. CP, 11350, Ciudad de México, Mexico
| | - Pardo Juan Pablo
- Universidad Nacional Autónoma de México, Facultad de Medicina. Departamento de Bioquímica. Laboratorio 7. Circuito Interior s/n, Ciudad Universitaria CP, 04510, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Applications of Fungal Strains with Keratin-Degrading and Plant Growth Promoting Characteristics. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein hydrolysates (PHs) are organic non-microbial biostimulants having beneficial effects on plants. The study was designed to assess the effects on plants by the applications of PHs obtained from Trichoderma isolates grown on keratin wastes. Trichoderma isolates were characterized for indole-3-acetic acid and siderophores production, activity of lytic enzymes, phosphorous solubilization and inhibition of pathogens growth, using qualitative specific tests. Fungal isolates were cultured on a medium with keratin wastes (wool and feathers) to obtain PHs. Fungal PHs were tested in vivo for plant biostimulant action, as follows: (i) seeds germination test; (ii) activation of plant proton pump; (iii) evaluation of effect on tomato seedling growth. PHs from T. asperellum cultured on feathers medium reached the highest values for all parameters recorded (plant height and diameter, number of leaves and branches), with the exception of those for plant biomass, which were maximum for the wool medium. The metabolites released by keratin degradation under the activity of selected T. asperellum isolate improved crop health and productivity. The use of PHs can be a reasonable solution for the environmental pollution of by-products from the food chain, as well as for the replacement of chemical fertilizers with microbial formulations to stimulate plant growth.
Collapse
|
11
|
Abdel-Rahim IR, Abo-Elyousr KA. Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights. Microbiol Res 2018; 212-213:1-9. [DOI: 10.1016/j.micres.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/10/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
12
|
Shi L, Du N, Yuan Y, Shu S, Sun J, Guo S. Vinegar residue compost as a growth substrate enhances cucumber resistance against the Fusarium wilt pathogen Fusarium oxysporum by regulating physiological and biochemical responses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18277-87. [PMID: 27272925 DOI: 10.1007/s11356-016-6798-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 04/29/2016] [Indexed: 05/04/2023]
Abstract
Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cucumerinum (FOC) is the most severe soil-borne disease attacking cucumber. To assess the positive effects of vinegar residue substrate (VRS) on the growth and incidence of Fusarium wilt on cucumber, we determined the cucumber growth parameters, disease severity, defense-related enzyme and pathogenesis-related (PR) protein activities, and stress-related gene expression levels. In in vitro and pot experiments, we demonstrated the following results: (i) the VRS extract exhibited a higher biocontrol activity than that of peat against FOC, and significantly improved the growth inhibition of FOC, with values of 48.3 %; (ii) in response to a FOC challenge, antioxidant enzymes and the key enzymes of phenylpropanoid metabolic activities, as well as the PR protein activities in the roots of cucumber, were significantly increased. Moreover, the activities of these proteins were higher in VRS than in peat; (iii) the expression levels of stress-related genes (including glu, pal, and ethylene receptor) elicited responses to the pathogens inoculated in cucumber leaves; and (iv) the FOC treatment significantly inhibited the growth of cucumber seedlings. Moreover, all of the growth indices of plants grown in VRS were significantly higher than those grown in peat. These results offer a new strategy to control cucumber Fusarium wilt, by upregulating the activity levels of defense-related enzymes and PR proteins and adjusting gene expression levels. They also provide a theoretical basis for VRS applications.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Nanshan Du
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Yinghui Yuan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
- Facility Horticulture Institute, Nanjing Agricultural University, Suqian, 223800, Jiangsu Province, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
- Facility Horticulture Institute, Nanjing Agricultural University, Suqian, 223800, Jiangsu Province, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China.
- Facility Horticulture Institute, Nanjing Agricultural University, Suqian, 223800, Jiangsu Province, China.
| |
Collapse
|
13
|
Yang S, Fu X, Yan Q, Jiang Z, Wang J. Biochemical Characterization of a Novel Acidic Exochitinase from Rhizomucor miehei with Antifungal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:461-469. [PMID: 26709620 DOI: 10.1021/acs.jafc.5b05127] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel chitinase gene (RmChi44) from Rhizomucor miehei was cloned and expressed in Escherichia coli as an intracellular soluble and active protein. The recombinant chitinase (RmChi44) was purified to homogeneity and biochemically characterized. The molecular mass of RmChi44 was estimated to be 44.6 kDa on SDS-PAGE. RmChi44 displayed an acidic pH optimum of 4.5 and was stable within pH 4.5-9.0. The optimal temperature of RmChi44 was found to be 50 °C. The Km values of RmChi44 for colloidal chitin and glycol chitin were 4.02 and 1.55 mg/mL, respectively. RmChi44 hydrolyzed colloidal chitin to yield mainly N-acetyl chitobiose, exhibiting an exotype cleavage pattern. Moreover, the enzyme displayed β-N-acetylglucosaminidase activity, splitting N-acetyl COSs with degree of polymerization (DP) 2-5 into their monomer. In addition, RmChi44 showed antifungal activity against some phytopathogenic fungi. This is the first report on an exochitinase showing β-N-acetylglucosaminidase activity and antifungal activity from Rhizomucor species.
Collapse
Affiliation(s)
- Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China
| | - Xin Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University , Beijing 100083, China
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China
| |
Collapse
|