1
|
Danait-Nabar S, Gharat K, Singhal RS. Sodium tripolyphosphate is a non-toxic and economic alternative to glutaraldehyde for preparation of L-asparaginase CLEAs to reduce acrylamide in potato fries. Food Chem 2025; 472:142894. [PMID: 39848042 DOI: 10.1016/j.foodchem.2025.142894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 12/28/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
L-Asparaginase CLEAs were prepared utilizing sodium tripolyphosphate (TPP) as a crosslinker (TA-CLEA). Under optimized conditions (pH 3, 0.3% TPP concentration, and a crosslinking time of 1 h), an 85% activity recovery was achieved. TA-CLEAs demonstrated superior pH stability (pH 3-8) compared to GA (glutaraldehyde)-CLEA but lost structural integrity at pH 9. TA-CLEAs were thermally more stable (concerning activity) and structurally less stable than GA-CLEA owing to the presence of weaker ionic bonds. TA-CLEAs reported an increase in apparent Km (reduced substrate affinity) and apparent Vmax values and displayed excellent reusability after 10 cycles of use (> 75%). The increase in β-sheet and random coil structures indicated a trade-off between structure stability and flexibility of the protein. TA-CLEAs reduced the acrylamide content in potato fries by 79% after 40 min of treatment time. Thus, the use of TPP as a non-toxic, economical, and biocompatible alternative to the conventionally used toxic crosslinker glutaraldehyde was demonstrated.
Collapse
Affiliation(s)
- Saaylee Danait-Nabar
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400 019, India.
| | - Krushna Gharat
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400 019, India.
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400 019, India.
| |
Collapse
|
2
|
Ramachandran DU, Gummadi SN. Kinetically controlled irreversible unfolding of esterase from Clostridium acetobutylicum: Thermal deactivation kinetics and structural studies. Int J Biol Macromol 2025; 297:139604. [PMID: 39788269 DOI: 10.1016/j.ijbiomac.2025.139604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
This study involves the thermal characterization of Ca-Est, an esterase from Clostridium acetobutylicum which has been previously found to exhibit maximum specific activity at 60 °C. In the present study, Ca-Est showed maximum stability at 30 °C with almost 75 % of its initial activity being retained after incubation for 5 h and the stability decreased with increasing temperature. Analysis of the thermodynamic parameters revealed that the deactivation of Ca-Est is endothermic and enthalpically favored. Circular Dichroism studies reveal that Ca-Est follows heat-induced irreversible unfolding. The melting temperature of the enzyme varied with different scan rates implying that the irreversible unfolding is kinetically controlled. At higher temperatures, unfolding of the protein resulted in the formation of aggregates which possibly prevented it from refolding back to its native structure. Intriguingly, at lower temperatures, where non aggregated states were present, unfolded Ca-Est did not refold back to the native structure, rather there was an increase in the percentage of beta sheets implying that the irreversibility could be due to an incorrect folding of the unfolded states which consecutively results in higher probability of forming aggregates. Future studies focusing on strategies to improve the reversibility would enhance the functionality of Ca-Est.
Collapse
Affiliation(s)
- Devasena Umai Ramachandran
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India.
| |
Collapse
|
3
|
Costa Silva MD, Costa RB, do Nascimento JS, Gomes MMODS, Ferreira AN, Grillo LAM, Luz JMRD, Gomes FS, Pereira HJV. Production of milk-coagulating protease by fungus Pleurotus djamor through solid state fermentation using wheat bran as the low-cost substrate. Prep Biochem Biotechnol 2024; 55:278-284. [PMID: 39222362 DOI: 10.1080/10826068.2024.2399040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Proteases are enzymes that hydrolyze peptide bonds present in proteins and peptides. They are widely used for various industrial applications, such as in the detergent, food, and dairy industries. Cheese is one of the most important products of the dairy industry, and the coagulation stage is crucial during the cheese-making process. Enzymatic coagulation is the most common technique utilized for this purpose. Microbial enzymes are frequently used for coagulation due to their advantages in terms of availability, sustainability, quality control, product variety, and compliance with dietary and cultural/religious requirements. In the present study, we identified and subsequently characterized milk coagulant activity from the fungus Pleurotus djamor PLO13, obtained during a solid-state fermentation process, using the agro-industrial residue, wheat bran, as the fermentation medium. Maximum enzyme production and caseinolytic activity occurred 120 h after cultivation. When the enzyme activity against various protease-specific synthetic substrates and inhibitors was analyzed, the enzyme was found to be a serine protease, similar to elastase 2. This elastase-2-like serine protease was able to coagulate pasteurized whole and reconstituted skim milk highly efficiently in the presence and absence of calcium, even at room temperature. The coagulation process was influenced by factors such as temperature, time, and calcium concentration. We demonstrate here, for the first time, an elastase-2-like enzyme in a microorganism and its potential application in the food industry for cheese production.
Collapse
Affiliation(s)
- Monizy da Costa Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Ricardo Bezerra Costa
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Josiel Santos do Nascimento
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | | | - Alexsandra Nascimento Ferreira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Luciano Aparecido Meireles Grillo
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - José Maria Rodrigues da Luz
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Francis Soares Gomes
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Hugo Juarez Vieira Pereira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| |
Collapse
|
4
|
Danait-Nabar S, Singhal RS. Immobilization of l-asparaginase on genipin cross-linked chitosan beads shows better acrylamide diminution in cassava chips: Process optimization and characterization. J Food Sci 2024; 89:6031-6050. [PMID: 39098813 DOI: 10.1111/1750-3841.17274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Glutaraldehyde is the conventionally used cross-linker for the activation and cross-linking of support matrices used in enzyme immobilization. However, the toxic nature of glutaraldehyde makes it unsafe for food applications, propelling the need for nontoxic cross-linkers. Genipin reacts with the primary and secondary amines generating a dark-blue colored pigment and is an attractive alternative to glutaraldehyde as a cross-linker for enzyme immobilization. Apart from its excellent cross-linking properties, genipin possesses added advantages over glutaraldehyde such as proven health benefits, biocompatibility, and biodegradability. The present study explores the application of chitosan beads cross-linked with the natural and nontoxic agent, genipin, for immobilizing l-asparaginase, aimed at its subsequent use in mitigating acrylamide formation in food products. The immobilized l-asparaginase exhibited improved functionalities such as stability, reusability, and reduction in acrylamide formation in deep-fried cassava chips. One of the limitations observed during application in the food process was the mechanical fragility of the chitosan beads during speedy stirring. This can be overcome by increasing the concentration and time of contact of the coagulant bath during the formation of chitosan beads. The drying of the enzyme-bound chitosan beads will also lead to shrinkage and prevent breakage during stirring. This study conclusively demonstrated the applicability of immobilizing l-asparaginase on genipin cross-linked chitosan beads in food-related processes.
Collapse
Affiliation(s)
- Saaylee Danait-Nabar
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
5
|
Bai Y, Wang Y, Li X, Jin J, Lu Y, Jiang S, Dong X, Qi H. Interaction mechanism and binding mode of phycocyanin to lysozyme: Molecular docking and molecular dynamics simulation. Food Chem 2024; 438:138001. [PMID: 37980873 DOI: 10.1016/j.foodchem.2023.138001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
In this study, multispectral analysis and molecular simulations were performed to investigate the interaction mechanism between phycocyanin (PC) and lysozyme (Lys). The interaction was examined using surface plasmon resonance (SPR), and the structural changes were analyzed using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results suggest that the interaction between PC and Lys was primarily driven by electrostatic, hydrophobic, and hydrogen bonding forces. Molecular dynamics (MD) simulation revealed that Lys preferentially binds between the two subunits, alpha (α) and beta (β), of PC, with residues ASP-13, GLU-106, and GLU-115 on PC and ARG-119, ARG-107, and ARG-98 on Lys being the main contributors to the binding interaction. Additionally, the formation of the PC-Lys complex resulted in increased kinetic and improved thermal stability of PC, which have important implications for PC applications.
Collapse
Affiliation(s)
- Ying Bai
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Yingzhen Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Xiang Li
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Jiarui Jin
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Yujing Lu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Shan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China.
| |
Collapse
|
6
|
Guimarães A, Mota AC, Pereira AS, Fernandes AM, Lopes M, Belo I. Rice Husk, Brewer's Spent Grain, and Vine Shoot Trimmings as Raw Materials for Sustainable Enzyme Production. MATERIALS (BASEL, SWITZERLAND) 2024; 17:935. [PMID: 38399185 PMCID: PMC10890580 DOI: 10.3390/ma17040935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Solid by-products with lignocellulosic structures are considered appropriate substrates for solid-state fermentation (SSF) to produce enzymes with diverse industrial applications. In this work, brewer's spent grain (BSG), rice husk (RH), and vine shoot trimmings (VSTs) were employed as substrates in SSF with Aspergillus niger CECT 2088 to produce cellulases, xylanases, and amylases. The addition of 2% (NH4)2SO4 and 1% K2HPO4 to by-products had a positive effect on enzyme production. Substrate particle size influenced enzyme activity and the overall highest activities were achieved at the largest particle size (10 mm) of BSG and RH and a size of 4 mm for VSTs. Optimal substrate composition was predicted using a simplex centroid mixture design. The highest activities were obtained using 100% BSG for β-glucosidase (363 U/g) and endo-1,4-β-glucanase (189 U/g), 87% BSG and 13% RH for xylanase (627 U/g), and 72% BSG and 28% RH for amylase (263 U/g). Besides the optimal values found, mixtures of BSG with RH or VSTs proved to be alternative substrates to BSG alone. These findings demonstrate that SSF bioprocessing of BSG individually or in mixtures with RH and VSTs is an efficient and sustainable strategy to produce enzymes of significant industrial interest within the circular economy guidelines.
Collapse
Affiliation(s)
- Ana Guimarães
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (M.L.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana C. Mota
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (M.L.)
| | - Ana S. Pereira
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (M.L.)
| | - Ana M. Fernandes
- CITEVE—Technological Centre for the Textile and Clothing Industry, 4760-034 Vila Nova de Famalicão, Portugal
| | - Marlene Lopes
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (M.L.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (M.L.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Costa EP, Brandão-Costa RMP, Albuquerque WWC, Nascimento TP, Sales Conniff AE, Cardoso KBB, Neves AGD, Batista JMDS, Porto ALF. Extracellular collagenase isolated from Streptomyces antibioticus UFPEDA 3421: purification and biochemical characterization. Prep Biochem Biotechnol 2024; 54:260-271. [PMID: 37355277 DOI: 10.1080/10826068.2023.2225090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Collagenases are proteases able to degrade native and denatured collagen, with broad applications such as leather, food, and pharmaceutical industries. The aim of this research was to purify and characterize a collagenase from Streptomyces antibioticus. In the present work, the coffee ground substrate provided conditions to obtaining high collagenase activity (377.5 U/mL) using anion-exchange DEAE-Sephadex G50 chromatographic protocol. SDS-PAGE revealed the metallo-collagenase with a single band of 41.28 kDa and was able to hydrolyzed type I and type V collagen producing bioactive peptides that delayed the coagulation time. The enzyme activity showed stability across a range of pH (6.0-11) and temperature (30-55 °C) with optima at pH 7.0 and 60 °C, respectively. Activators include Mg+2, Ca+2, Na+, K+, while full inhibition was given by other tested metalloproteinase inhibitors. Kinetic parameters (Km of 27.14 mg/mol, Vmax of 714.29 mg/mol/min, Kcat of 79.9 s-1 and Kcat/Km of 2.95 mL/mg/s) and thermodynamic parameters (Ea of 65.224 kJ/mol, ΔH of 62.75 kJ/mol, ΔS of 1.96 J/mol, ΔG of 62.16 kJ/mol, ΔGE-S of 8.18 kJ/mol and ΔGE-T of -2.64 kJ/mol) were also defined. Coffee grounds showed to be an interesting source to obtaining a collagenase able to produce bioactive peptides with anticoagulant activity.
Collapse
Affiliation(s)
- Elizianne Pereira Costa
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco, Recife, PE, Brazil
- Center of Biological Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | | | | - Ana Lúcia Figueiredo Porto
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco, Recife, PE, Brazil
- Center of Biological Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
8
|
Salehi M. Evaluating the industrial potential of naturally occurring proteases: A focus on kinetic and thermodynamic parameters. Int J Biol Macromol 2024; 254:127782. [PMID: 37926323 DOI: 10.1016/j.ijbiomac.2023.127782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/07/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Thermodynamic and kinetic parameters, such as enthalpy, entropy, and free energy, are crucial in evaluating enzyme stability and activity. These parameters, including the free energy of activation (ΔG#) and the Gibbs free energy of inactivation (ΔG*), are important for predicting energy requirements and reaction rates. However, relying solely on these parameters is insufficient in selecting an enzyme for industrial processes. Numerous studies have explored the measurement of thermodynamic parameters for proteases. Unfortunately, some of the definitions and calculations of key parameters such as ΔG#, ΔG*, and substrate-binding free energy have contained significant errors. In this study, these mistakes have been addressed and corrected. Additionally, a new parameter called δ, defined as the difference between ΔG* and ΔG#, has been introduced for the first time. It is argued that δ provides a more reliable measure for predicting the potential industrial application of enzymes. The highest calculated value for δ was found to be 39.6 kJ·mol-1 at 55 °C. Furthermore, this study also presents a comprehensive collection and determination of all thermodynamic and kinetic parameters for proteases, providing researchers and professionals in the field with a valuable resource to compare and understand the relationships between these parameters and the industrial potential of enzymes.
Collapse
Affiliation(s)
- Mahmoud Salehi
- Department of Biology, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad Kavous, Iran.
| |
Collapse
|
9
|
Amaral YMS, de Castro RJS. Chicken viscera meal as substrate for the simultaneous production of antioxidant compounds and proteases by Aspergillus oryzae. Bioprocess Biosyst Eng 2023; 46:1777-1790. [PMID: 37919523 DOI: 10.1007/s00449-023-02934-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
The use of chicken waste can contribute to the development of new processes and obtaining molecules with high added value. An experimental design was applied to evaluate the effect of moisture, temperature, and inoculum size on the production of antioxidant peptides and proteases by A. oryzae IOC3999 through solid-state fermentation (SSF) of chicken viscera meal. As a result, the process conditions strongly influenced protease production and antioxidant activity of the fermented products. A global analysis of the results indicated that the most adequate conditions for SSF were (assay 9): 40% initial moisture, 30 °C as the incubation temperature, 5.05 × 106 spores/g as the inoculum size, and 48-h fermentation as the fermentation time. Under this condition, the antioxidant activities for the ABTS- and DPPH-radicals inhibition and ferric reducing antioxidant power (FRAP) methods were 376.16, 153.29, and 300.47 (µmol TE/g), respectively, and the protease production reached 428.22 U/g. Ultrafiltration of the crude extract obtained under optimized fermentation conditions was performed, and the fraction containing peptides with molecular mass lower than 3 kDa showed the highest antioxidant activity. The proteases were biochemically characterized and showed maximal activity at pH values ranging from 5.0 to 6.0 and a temperature of 50 °C. The thermodynamic parameters indicated that the process of thermal protease inactivation is not spontaneous (ΔG*d > 88.78 kJ/mol), increasing with temperature (ΔH*d 27.01-26.88 kJ/mol), and with reduced disorder in the system (ΔS*d < - 197.74 kJ/mol) probably caused by agglomeration of partially denatured enzymes.
Collapse
Affiliation(s)
- Yuri Matheus Silva Amaral
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil.
| | - Ruann Janser Soares de Castro
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil.
| |
Collapse
|
10
|
Vieira L, Filipe D, Amaral D, Magalhães R, Martins N, Ferreira M, Ozorio R, Salgado J, Belo I, Oliva-Teles A, Peres H. Solid-State Fermentation as Green Technology to Improve the Use of Plant Feedstuffs as Ingredients in Diets for European Sea Bass ( Dicentrarchus labrax) Juveniles. Animals (Basel) 2023; 13:2692. [PMID: 37684956 PMCID: PMC10486719 DOI: 10.3390/ani13172692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed to evaluate the utilization by juvenile European sea bass of a SSFed PF mixture with Aspergillus niger CECT 2088. A 22-day digestibility and a 50-day growth trial were performed testing four diets, including 20 or 40% of an unfermented or SSFed PF mixture (rapeseed, soybean, rice bran, and sunflower seed meals, 25% each). SSF of the PF added cellulase and β-glucosidase activity to the diets. Mycotoxin contamination was not detected in any of the experimental diets except for residual levels of zearalenone and deoxynivalenol (100 and 600 times lower than that established by the European Commission Recommendation-2006/576/EC). In diets including 20% PF, SSF did not affect growth but increased apparent digestibility coefficients of protein and energy, feed efficiency, and protein efficiency ratio. On the contrary, in diets including 40% PF, SSF decreased growth performance, feed intake, feed and protein efficiency, and diet digestibility. SSF decreased the intestinal amylase activity in the 40% SSFed diet, while total alkaline proteases decreased in the 20% and 40% SSFed diets. Hepatic amino acid catabolic enzyme activity was not modulated by SSF, and plasma total protein, cholesterol, and triglyceride levels were similar among dietary treatments. In conclusion, dietary inclusion of moderate levels of the SSFed PF, up to 20%, improves the overall feed utilization efficiency without negatively impacting European sea bass growth performance. The replacement of PF with the SSFed PF mixture may contribute to reducing the environmental footprint of aquaculture production.
Collapse
Affiliation(s)
- Lúcia Vieira
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - Diogo Filipe
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - Diogo Amaral
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - Rui Magalhães
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - Nicole Martins
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - Marta Ferreira
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Rodrigo Ozorio
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - José Salgado
- Industrial Biotechnology and Environmental Engineering Group “BiotecnIA”, Chemical Engineering Department, University of Vigo, Campus Ourense, As Lagoas s/n, 32004 Ourense, Spain
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, 4704-553 Guimarães, Portugal
| | - Aires Oliva-Teles
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - Helena Peres
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| |
Collapse
|
11
|
Xu J, Liu G, He Y, Zhou L, Ma L, Liu Y, Zheng X, Gao J, Jiang Y. Enzyme@bismuth-ellagic acid: a versatile platform for enzyme immobilization with enhanced acid-base stability. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Zaman U, Khan SU, Alem SFM, Rehman KU, Almehizia AA, Naglah AM, Al-Wasidi AS, Refat MS, Saeed S, Zaki MEA. Purification and thermodynamic characterization of acid protease with novel properties from Melilotus indicus leaves. Int J Biol Macromol 2023; 230:123217. [PMID: 36634806 DOI: 10.1016/j.ijbiomac.2023.123217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
A thermostable acid protease from M. indicus leaves was purified 10-fold using a 4-step protocol. We were able to isolate a purified protease fraction with a molecular weight of 50 kDa and exhibited maximal protease activity at pH 4.0 and 40 °C. Structural analysis revealed that the protease is monomeric and non-glycosylated. The addition of epoxy monocarboxylic acid, iodoacetic acid, and dimethyl sulfoxide significantly reduced protease activity while dramatically increasing the inhibition of Mn2+, Fe2+, and Cu2+. The activation energy of the hydrolysis reaction (33.33 kJ mol-1) and activation energy (Ed = 105 kJ mol-1), the standard enthalpy variation of reversible protease unfolding (2.58 kJ/mol) were calculated after activity measurements at various temperatures. Thermal inactivation of the pure enzyme followed first-order kinetics. The half-life (t1/2) of the pure enzyme at 50 °C, 60 °C, and 70 °C was 385, 231, and 154 min, respectively. Thermodynamic parameters (entropy and enthalpy) suggested that the protease was highly thermostable. This is the first report on the thermodynamic parameters of proteases produced by M. indicus. The novel protease appears to be particularly thermostable and may be important for industrial applications based on these thermodynamic properties.
Collapse
Affiliation(s)
- Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University KPK, Pakistan; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Abdulrahman A Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
13
|
Investigation into the chemical modification of α-amylase using octenyl succinic anhydride: enzyme characterisation and stability studies. Bioprocess Biosyst Eng 2023; 46:645-664. [PMID: 36826507 DOI: 10.1007/s00449-023-02850-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
The present study describes the chemical modification of α-amylase using succinic anhydride (SA), phthalic anhydride (PA) and a novel modifier viz. 2-octenyl succinic anhydride (2-OSA). SA-, PA- and 2-OSA-α-amylases displayed a 50%, 91% and 46% increase in stability at pH 9, respectively; as compared to unmodified α-amylase. PA-α-amylase showed a significant increase in Ea and ΔHa#, and a concomitant decrease in ΔSa#. The modified α-amylases exhibited improved thermostability as reflected by significant reductions in Kd and ΔSd#, and increments in t1/2, D-, Ed, ΔHd# and ΔGd# values. The modified α-amylases displayed variable stabilities in the presence of different surfactants, inhibitors, metal ions and organic solvents. Interestingly, the chemical modification was found to confer resistance against inactivation by Hg2+ on α-amylase. The conformational changes in modified α-amylases were investigated using intrinsic tryptophan fluorescence, ANS (extrinsic) tryptophan fluorescence, and dynamic fluorescence quenching. Both intrinsic and extrinsic tryptophan fluorescence spectra showed increased fluorescence intensity for the modified α-amylases. Chemical modification was found to induce a certain degree of structural rigidity to α-amylase, as shown by dynamic fluorescence quenching. Analysis of the CD spectra by the K2d method using the DichroWeb online tool indicated evident changes in the α-helix, β-sheet and random coil fractions of the α-amylase secondary structure, following chemical modification using anhydrides. PA-α-amylase exhibited the highest productivity in terms of hydrolysis of starch at 60 °C over a period of 5 h indicating potential in varied biotechnological applications.
Collapse
|
14
|
Costa AR, Salgado JM, Lopes M, Belo I. Valorization of by-products from vegetable oil industries: Enzymes production by Yarrowia lipolytica through solid state fermentation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1006467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vegetable oil extraction generates high amounts of by-products, which are designated as oil cakes. Since the current strategies employed for oil cakes' reuse are linked with some drawbacks, identification of alternative approaches to decrease the environmental impact and promote a circular economy is of vital importance. In general, these materials are characterized by high fiber content, making them suitable to be employed in solid state fermentation (SSF). Filamentous fungi have been the microorganisms mostly applied in SSF and yeasts were applied in less extent. In the present work, three by-products from the extraction of olive, sunflower, and rapeseed oils were used as solid substrates in SSF for lipase and protease production by Yarrowia lipolytica W29. Oil cakes mixtures composition was optimized for the production of each enzyme using a simplex-centroid design of experiments. A 50% (w/w) mixture of olive cake (OC) and sunflower cake (SC) led to the highest lipase production, while a combination of the three oil cakes was most suitable for maximum protease production. Both enzymes were produced at maximum levels in a short period of 48 h. This work demonstrated that enzyme production by Y. lipolytica W29 in SSF can be modulated by the different combinations of oil cakes in the substrate mixture. Additionally, the potential of using by-products from vegetable oil industries in SSF processes was also demonstrated, showing alternative strategies for their valorization.
Collapse
|
15
|
Production, Biochemical Characterization, and Kinetic/Thermodynamic Study of Inulinase from Aspergillus terreus URM4658. Molecules 2022; 27:molecules27196418. [PMID: 36234954 PMCID: PMC9571395 DOI: 10.3390/molecules27196418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Inulinases are enzymes involved in the hydrolysis of inulin, which can be used in the food industry to produce high-fructose syrups and fructo-oligosaccharides. For this purpose, different Aspergillus strains and substrates were tested for inulinase production by solid-state fermentation, among which Aspergillus terreus URM4658 grown on wheat bran showed the highest activity (15.08 U mL−1). The inulinase produced by this strain exhibited optimum activity at 60 °C and pH 4.0. A detailed kinetic/thermodynamic study was performed on the inulin hydrolysis reaction and enzyme thermal inactivation. Inulinase was shown to have a high affinity for substrate evidenced by very-low Michaelis constant values (0.78–2.02 mM), which together with a low activation energy (19.59 kJ mol−1), indicates good enzyme catalytic potential. Moreover, its long half-life (t1/2 = 519.86 min) and very high D-value (1726.94 min) at 60 °C suggested great thermostability, which was confirmed by the thermodynamic parameters of its thermal denaturation, namely the activation energy of thermal denaturation (E*d = 182.18 kJ mol−1) and Gibbs free energy (106.18 ≤ ΔG*d ≤ 111.56 kJ mol−1). These results indicate that A. terreus URM4658 inulinase is a promising and efficient biocatalyst, which could be fruitfully exploited in long-term industrial applications.
Collapse
|
16
|
Fabrication and characterization of phycocyanin-alginate-pregelatinized corn starch composite gel beads: Effects of carriers on kinetic stability of phycocyanin. Int J Biol Macromol 2022; 218:665-678. [PMID: 35870624 DOI: 10.1016/j.ijbiomac.2022.07.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Composite gel beads using calcium alginate and different concentrations of pregelatinized corn starch (PCS) were produced to encapsulate phycocyanin (PC). Rheological properties of different sodium alginate/PCS/PC mixtures, structural and morphological properties of beads, and kinetic stability of encapsulated PC (upon heating at various time-temperature combinations) were then assessed. Rheological properties of the mixtures exhibited shear thinning behaviors. Aquagram revealed that the PC-containing beads had more water structure with weak‑hydrogen bonds. Morphological images represented less subsidence in the structures of composite gel beads, unlike PCS-free beads. Kinetic study showed that degradation rate constant values of PC encapsulated in composite gel beads (1.08-3.45 × 10-4, 3.38-4.43 × 10-4, and 5.57-15.32 × 10-4 s-1) were lower than those in PCS-free alginate gel beads (4.45 × 10-4, 9.20 × 10-4, and 18.04 × 10-4 s-1) at 40, 50, and 60 °C, respectively. This study suggests that the composite gel beads can improve PC stability.
Collapse
|
17
|
Salese L, Liggieri CS, Bernik DL, Bruno MA. Characterization of the fruit proteolytic system of Bromelia serra Griseb. (Bromeliaceae) and its application in bioactive peptides release. J Food Biochem 2021; 46:e14016. [PMID: 34811749 DOI: 10.1111/jfbc.14016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
A crude extract with proteolytic activity was prepared from edible fruits of Bromelia serra, containing cysteine peptidases with molecular masses between 24.1 and 25.9 kDa. The extract presented an optimal pH range of 6.03-9.05, retained more than 80% of activity after thermal pre-treatments at 23, 37, and 45°C (120 min), but it was rapidly inactivated after 10 min at 75°C. These proteases were employed to hydrolyze soybean proteins, bovine casein and bovine whey, achieving degrees of hydrolysis of 18.3 ± 0.6, 29.1 ± 0.7, and 12.6 ± 0.9% (55°C, 180 min), respectively. The casein 180 min-hydrolysate (55°C) presented the maximum value of antioxidant activity (2.89 ± 0.12 mg/mL Trolox), and the whey protein 180 min-hydrolysate (55°C) showed the highest percentage of angiotensin-converting enzyme inhibition (91.9 ± 1.2%). This low-cost enzymatic preparation would be promising for the food industry because it requires mild working conditions and yields hydrolysates with biological activities useful as ingredients for functional food. PRACTICAL APPLICATION: Proteolytic enzymes are employed in the food industry in a wide variety of processes since they modify the properties of proteins causing beneficial effects such as improvement digestibility, diminution of allergenicity, and release of bioactive peptides. Fruits from Bromelia serra possess cysteine peptidases that could be used in food biotechnology because they are capable to hydrolyze soybean and milk proteins by mild working conditions and to provoke the release of bioactive peptides. These hydrolysates containing antioxidative and ACE-inhibitor activities would be useful as ingredients for functional foods or as nutraceuticals, which are nowadays two products highly required by consumers.
Collapse
Affiliation(s)
- Lucía Salese
- Consejo Nacional de Investigación en Ciencia y Tecnología (CONICET), Buenos Aires, Argentina.,Centro de Investigación de Proteínas Vegetales (CIPROVE), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Constanza Silvina Liggieri
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Buenos Aires, Argentina
| | - Delia Leticia Bernik
- Consejo Nacional de Investigación en Ciencia y Tecnología (CONICET), Buenos Aires, Argentina.,Centro de Investigación de Proteínas Vegetales (CIPROVE), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariela Anahí Bruno
- Consejo Nacional de Investigación en Ciencia y Tecnología (CONICET), Buenos Aires, Argentina.,Centro de Investigación de Proteínas Vegetales (CIPROVE), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
18
|
Abstract
Proteases are ubiquitous enzymes, having significant physiological roles in both synthesis and degradation. The use of microbial proteases in food fermentation is an age-old process, which is today being successfully employed in other industries with the advent of ‘omics’ era and innovations in genetic and protein engineering approaches. Proteases have found application in industries besides food, like leather, textiles, detergent, waste management, agriculture, animal husbandry, cosmetics, and pharmaceutics. With the rising demands and applications, researchers are exploring various approaches to discover, redesign, or artificially synthesize enzymes with better applicability in the industrial processes. These enzymes offer a sustainable and environmentally safer option, besides possessing economic and commercial value. Various bacterial and fungal proteases are already holding a commercially pivotal role in the industry. The current review summarizes the characteristics and types of proteases, microbial source, their current and prospective applications in various industries, and future challenges. Promoting these biocatalysts will prove significant in betterment of the modern world.
Collapse
|
19
|
Use of a Sequential Fermentation Method for the Production of Aspergillus tamarii URM4634 Protease and a Kinetic/Thermodynamic Study of the Enzyme. Catalysts 2021. [DOI: 10.3390/catal11080963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microbial proteases are commonly produced by submerged (SmF) or solid-state fermentation (SSF), whose combination results in an unconventional method, called sequential fermentation (SF), which has already been used only to produce cellulolytic enzymes. In this context, the aim of the present study was the development of a novel SF method for protease production using wheat bran as a substrate. Moreover, the kinetic and thermodynamic parameters of azocasein hydrolysis were estimated, thus providing a greater understanding of the catalytic reaction. In SF, an approximately 9-fold increase in protease activity was observed compared to the conventional SmF method. Optimization of glucose concentration and medium volume by statistical means allowed us to achieve a maximum protease activity of 180.17 U mL−1. The obtained enzyme had an optimum pH and temperature of 7.0 and 50 °C, respectively. Kinetic and thermodynamic parameters highlighted that such a neutral protease is satisfactorily thermostable at 50 °C, a temperature commonly used in many applications in the food industry. The results obtained suggested not only that SF could be a promising alternative to produce proteases, but also that it could be adapted to produce several other enzymes.
Collapse
|
20
|
Wan Y, Fan H, Gao L, Li R, Xie M, Wu C, Chen L, Fu G. The Change Mechanism of Structural Characterization and Thermodynamic Properties of Tannase from Aspergillus niger NL112 Under High Temperature. Appl Biochem Biotechnol 2021; 193:2225-2244. [PMID: 33686629 DOI: 10.1007/s12010-021-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Tannase from Aspergillus niger NL112 was purified 5.1-fold with a yield of 50.44% via ultrafiltration, DEAE-Sepharose Fast Flow column chromatography, and Sephadex G-100 column chromatography. The molecular weight of the purified tannase was estimated as 45 kDa. The optimum temperature and pH for its activity were 45 °C and 5.0, respectively. The results of circular dichroism, FT-IR (Fourier transform infrared) spectroscopy, and fluorescence spectra indicated that high temperature could lead to the change of tannase secondary and tertiary structures. Tannase had a greater affinity for tannic acid at 40 °C with a Km value of 2.12 mM and the greatest efficiency hydrolysis (Kcat/Km) at 45 °C. The rate of inactivation (k) increased with the increase of temperature and the half-life (t1/2) gradually decreased. It was found to be 1.0 of the temperature quotient (Q10) value for tannic acid hydrolysis by tannase. The thermodynamic parameters of the interaction system were calculated at various temperatures. The positive enthalpy (ΔH) values and decreasing ΔH values with the increase of temperature indicated that the hydrolysis of tannase was an endothermic process. Our results indicated that elevated temperature could change the tertiary structure of tannase and reduce its thermostability, which caused a gradual decrease of tannase activity with an increase in temperature.
Collapse
Affiliation(s)
- Yin Wan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Haowei Fan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Lin Gao
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Ruyi Li
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - ChouFei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Longyan Chen
- Alentic Microscience Inc., 1344 Summer St, Halifax, NS, B3H 0A8, Canada
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China.
| |
Collapse
|
21
|
Retracted: Production, biochemical characterization, and kinetic/thermodynamic study of novel serine protease from Aspergillus avenaceus URM 6706. Biotechnol Prog 2021; 37:e3091. [PMID: 33064362 DOI: 10.1002/btpr.3091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 11/09/2022]
Abstract
"Production, biochemical characterization, and kinetic/thermodynamic study of novel serine protease from Aspergillus avenaceus URM 6706" (by da Silva A, et al.) Bio. Tech. Prog.; https://aiche.onlinelibrary.wiley.com/doi/10.1002/btpr.3091 The above listed article, from Biotechnology Progress, published online in Early View on October 16, 2020 in Wiley Online Library (http://wileyonlinelibrary.com), has been retracted by agreement between the authors, the journal's Editor-in-Chief, John A. Morgan and Wiley Periodicals LLC. The retraction has been agreed because the article was not accepted for publication by the Journal and subsequently published in error as an Early View article. The editorial team of this journal takes full responsibility and apologizes for the technical error that resulted in this article appearing in Early View.
Collapse
|
22
|
Mustefa Beyan S, Venkatesa Prabhu S, Mumecha TK, Gemeda MT. Production of Alkaline Proteases using Aspergillus sp. Isolated from Injera: RSM-GA Based Process Optimization and Enzyme Kinetics Aspect. Curr Microbiol 2021; 78:1823-1834. [PMID: 33779778 DOI: 10.1007/s00284-021-02446-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Alkaline proteases are well known to be significant industrial enzymes. This study focused on isolating the fungus producing proteases from, a typical Ethiopian food, Injera. Further, the process optimization for protease production using response surface methodology (RSM) and the characterization of the acquired protease were investigated. The 18S rDNA gene sequence homology of the fungus isolate revealed that it was Aspergillus sp. Further, it was deposited in NCBI GenBank with accession number MK4262821. Using the isolate, owing to maximize the protease production, the independent process parameters, temperature, pH, and sucrose concentration were optimized using RSM followed by a genetic algorithm (GA). Based on the statistical approach by RSM-GA optimization, maximum enzyme activity (166.4221 U/ml) was found at 30.5 °C, pH 8.24, and 0.316% sucrose concentration. Also, the crude cocktail of enzymes acquired from optimal condition was partially purified using ammonium which showed that the increased activity by 1.96-fold. Considerably, the partially purified enzyme exhibited stable performance during the temperature range 30-60 °C, pH range 7-10, and NaCl concentration of 0.5-2 mM. Also, the antioxidant activity, degree hydrolysis for the protein, Michaelis-Menten (M-M) kinetic parameters, and activation energy were determined for the obtained enzyme cocktail. It showed that the M-M kinetic parameters, Km (5.54 mg/ml), and Vmax (24.44 mg/ml min) values were observed. Using Arrhenius law, the value of activation energy for the enzyme cocktail was determined as 32.42 kJ/mol.
Collapse
Affiliation(s)
- Surafel Mustefa Beyan
- School of Chemical Engineering, Jimma University, Jimma Institute of Technology, 378, Jimma, Ethiopia.
| | - S Venkatesa Prabhu
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Tsegazeab K Mumecha
- Department of Chemical Engineering, Debre Berhan University, Debre Berhan, Ethiopia
| | - Mesfin T Gemeda
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
23
|
Matkawala F, Nighojkar S, Kumar A, Nighojkar A. Microbial alkaline serine proteases: Production, properties and applications. World J Microbiol Biotechnol 2021; 37:63. [PMID: 33730214 DOI: 10.1007/s11274-021-03036-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/09/2021] [Indexed: 01/27/2023]
Abstract
Proteolytic enzymes hold a pivotal position in numerous industrial processes where hydrolysis of protein molecules is required under precise conditions. The emerging trend of biotechnological applications in recent years has witnessed a renewed interest in alkaline serine proteases extending their utility in detergent, leather, textile, food and pharmaceutical industries. A variety of microorganisms have been reported to produce alkaline serine proteases on a large scale, however, extensive research to find an alkaline serine protease with desirable characteristics such as significant catalytic efficiency, expanded stability and broad substrate specificity is still ongoing. Although submerged fermentation dominates the commercial enzyme production, recent reports have emphasized on solid state fermentation technology which can reduce major cost associated with the enzyme production. In the present review, recent research on alkaline serine proteases along with their novel properties and production using solid state fermentation have been discussed.
Collapse
Affiliation(s)
- Fatema Matkawala
- Maharaja Ranjit Singh College of Professional Sciences, Khandwa Rd., Indore, 452001, India
| | - Sadhana Nighojkar
- Mata Gujri College of Professional Studies, A.B. Road, Indore, 452001, India
| | - Anil Kumar
- School of Biotechnology, Devi Ahilya University, Khandwa Road, Indore, 452001, India
| | - Anand Nighojkar
- Maharaja Ranjit Singh College of Professional Sciences, Khandwa Rd., Indore, 452001, India.
| |
Collapse
|
24
|
Muley AB, Awasthi S, Bhalerao PP, Jadhav NL, Singhal RS. Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: process optimization, characterization, stability, and application for epoxidation of lemongrass oil. Bioprocess Biosyst Eng 2021; 44:1383-1404. [PMID: 33660099 DOI: 10.1007/s00449-021-02509-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/04/2021] [Indexed: 12/01/2022]
Abstract
Cross-linked enzyme aggregates (CLEAs) of lipase were prepared after fractional precipitation with 40-50% ammonium sulfate and then cross-linking with glutaraldehyde. The process variables for the preparation of lipase-CLEAs such as glutaraldehyde concentration, cross-linking period, and initial pH of medium were optimized. The optimized conditions for the preparation of lipase-CLEAs were 25 mM/80 min/pH 7.0, and 31.62 mM/90 min/pH 6.0 with one factor at a time approach and numerical optimization with central composite design, respectively. Lipase-CLEAs were characterized by particle size analysis, SEM, and FTIR. Cross-linking not only shifted the optimal pH and temperature from 7.0 to 7.5 and 40-45 to 45-50 °C, but also altered the secondary structure. Lipase-CLEAs showed an increase in Km by 7.70%, and a decrease in Vmax by 16.63%. Lipase-CLEAs presented better thermostability than free lipase as evident from thermal inactivation constants (t1/2, D and Ed value), and thermodynamic parameters (Ed, ΔH°, ΔG°, and ΔS°) in the range of 50-70 °C. Lipase-CLEAs retained more than 65% activity up to four cycles and showed good storage stability for 12 days when stored at 4 ± 2 °C. They were successfully utilized for the epoxidation of lemongrass oil which was confirmed by changes in iodine value, epoxide value, and FTIR spectra.
Collapse
Affiliation(s)
- Abhijeet Bhimrao Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Sneha Awasthi
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Prasanna Prakash Bhalerao
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Nilesh Lakshaman Jadhav
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Rekha Satishchandra Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| |
Collapse
|
25
|
Ladole MR, Pokale PB, Patil SS, Belokar PG, Pandit AB. Laccase immobilized peroxidase mimicking magnetic metal organic frameworks for industrial dye degradation. BIORESOURCE TECHNOLOGY 2020; 317:124035. [PMID: 32871333 DOI: 10.1016/j.biortech.2020.124035] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 05/05/2023]
Abstract
In the present work, laccase was successfully immobilized in peroxidase mimicking magnetic metal organic frameworks (MMOFs) within 30 min using a facile approach. The integration of magnetic nanoparticles during synthesis significantly eases the separation of prepared biocatalyst using an external magnet. The immobilization of laccase was confirmed using different characterization techniques. The laccase@MMOFs found spherical in nature with an average particle size below 100 nm. The synthesized laccase embedded framework exhibits supermagnetic property with the saturation magnetization (Ms) of 34.12 emu/gm. The prepared bio-metallic frameworks maintain high surface area and thermal stability. The laccase@MMOFs was successfully exploited for the degradation of industrial dyes in batch and continuous mode with an average degradation efficiency of 95%. The prepared laccase structure had an excellent recyclability retaining upto 89% residual activity upto 10th cycle and can be stored at room temperature upto 30 days without any significant loss of activity.
Collapse
Affiliation(s)
- Mayur Ramrao Ladole
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Pravin Babanrao Pokale
- Department of E & TC, Priyadarshini J.L. Chaturvedi College of Engineering & Technology, Nagpur, India
| | | | | | | |
Collapse
|
26
|
Biochemical and thermodynamic characteristics of a new serine protease from Mucor subtilissimus URM 4133. ACTA ACUST UNITED AC 2020; 28:e00552. [PMID: 33294402 PMCID: PMC7683317 DOI: 10.1016/j.btre.2020.e00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/27/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
A protease from the fungus Mucor subtilissimus URM 4133, capable of producing bioactive peptides from goat casein, was purified. SDS-PAGE and zymography showed a molecular mass of 30 kDa. The enzyme was active and stable in a wide pH range (6.0–10.5) and (5.0–10.5), respectively. Optimum temperature was at 45–50 °C and stability was above 80 % (40 °C/2 h). Activity was not influenced by ions or organic substances (Triton, Tween, SDS and DMSO), but was completely inhibited by PMSF, suggesting that it belongs to the serine protease family. The Km and Vmax were 2.35 mg azocasein.mL-1 and 333.33 U.mg protein-1, respectively. Thermodynamic parameters of irreversible denaturation (40–60 °C) were enthalpy 123.63 – 123.46 kJ.mol-1, entropy 120.24–122.28 kJ.mol-1 and Gibbs free energy 85.97 – 82.45 kJ.mol-1. Any peptide sequences compatible with this protease were found after analysis by MALDI-TOF, which suggests that it is a new serine protease.
Collapse
|
27
|
Fernandes LMG, Carneiro-da-Cunha MN, Silva JDC, Porto ALF, Porto TS. Purification and characterization of a novel Aspergillus heteromorphus URM 0269 protease extracted by aqueous two-phase systems PEG/citrate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Greener production of low methoxyl pectin via recyclable enzymatic de-esterification using pectin methylesterase cross-linked enzyme aggregates captured from citrus peels. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
New Method of Determining Kinetic Parameters for Decomposition of Hydrogen Peroxide by Catalase. Catalysts 2020. [DOI: 10.3390/catal10030323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The presented study investigates the kinetic properties of catalase during hydrogen peroxide decomposition reaction. A novel and simple method is hereby proposed for the determination of the enzyme deactivation rate constant (kd) and the decomposition of H2O2 reaction rate constant (kr). Available methods allow the kd constant to be determined only based on previously experimentally determined kr. The presented method differs from the conventional procedure. Known initial and final concentrations of hydrogen peroxide enable determination of both constants at the same time based on data from only one experiment. The correctness of the new method proposed here in determining the reaction rate constant was checked by comparing the obtained constant values with the calculated values according to the commonly used Aebi method. The method was used to analyze in detail the effect of pH (3–10) and temperature (10–45 °C) of the reaction medium on kinetic constants. The value of the constant kd increases together with the value of pH and temperature. In addition, the activation energy for decomposition reaction and deactivation reaction was found to be Er = 14 kJ mol−1 and Ed = 56.8 kJ mol−1 respectively.
Collapse
|
30
|
Enhanced production of alkaline protease by Neocosmospora sp. N1 using custard apple seed powder as inducer and its application for stain removal and dehairing. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Mostafa FA, Saleh SA, Ahmed SA, Helmy WA. Statistical optimization and biochemical characterization of bioactive Bacillus megaterium 314 caseinase produced on egg shell and molokihya stalks. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Screening and evaluation of filamentous fungi potential for protease production in swine plasma and red blood cells-based media: qualitative and quantitative methods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Muley AB, Chaudhari SA, Bankar SB, Singhal RS. Stabilization of cutinase by covalent attachment on magnetic nanoparticles and improvement of its catalytic activity by ultrasonication. ULTRASONICS SONOCHEMISTRY 2019; 55:174-185. [PMID: 30852153 DOI: 10.1016/j.ultsonch.2019.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
This paper reports on stabilization of serine cutinase activity by immobilizing it through cross linking with glutaraldehyde on magnetic nanoparticles (Fe-NPs) and intensification of catalytic activity by ultrasonic treatment. The optimum parameters were cross linking with 10.52 mM glutaraldehyde for 90 min using 1:2 (w/w) ratio of enzyme:Fe-NPs. The characterization of cutinase-Fe-NPs was done by different instrumental analysis. Ultrasonic power showed a beneficial effect on the activity of free and immobilized cutinase at 5.76 and 7.63 W, respectively, after 12 min. Immobilization and ultrasonic treatment led to increments in kinetic parameters (Km and Vmax) along with noticeable changes in the secondary structural fractions of cutinase. Cutinase-Fe-NPs showed augmented pH (4-8) and thermal stability (40-60 °C). Considerably higher thermal inactivation kinetic constants (kd, t1/2 and D-value) and thermodynamic constants (Ed, ΔH°, ΔG° and ΔS°) highlighted superior thermostability of cutinase-Fe-NPs. Cutinase-Fe-NPs and ultrasound treated cutinase-Fe-NPs retained 61.88% and 38.76% activity during 21-day storage, and 82.82 and 80.69% activity after fifth reusability cycle, respectively.
Collapse
Affiliation(s)
- Abhijeet B Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Sandeep A Chaudhari
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India; Department of Bioprocess and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Helsinki, Finland
| | - Sandip B Bankar
- Department of Bioprocess and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Helsinki, Finland
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
34
|
Aguilar JGDS, Castro RJSD, Sato HH. ALKALINE PROTEASE PRODUCTION BY Bacillus licheniformis LBA 46 IN A BENCH REACTOR: EFFECT OF TEMPERATURE AND AGITATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20180014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Pectin hydrolysis in cashew apple juice by Aspergillus aculeatus URM4953 polygalacturonase covalently-immobilized on calcium alginate beads: A kinetic and thermodynamic study. Int J Biol Macromol 2019; 126:820-827. [DOI: 10.1016/j.ijbiomac.2018.12.236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/28/2018] [Accepted: 12/25/2018] [Indexed: 12/17/2022]
|
36
|
Deniz I, Zihnioglu F, Öncel SS, Hames EE, Vardar-Sukan F. Production, purification and characterization of a proteolytic enzyme from Streptomyces sp. 2M21. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1568415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Irem Deniz
- Bioengineering Department, Engineering Faculty, Manisa Celal Bayar University, Muradiye-Manisa, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, Bornova-Izmir, Turkey
| | - Suphi S. Öncel
- Bioengineering Department, Engineering Faculty, Ege University, Bornova-Izmir, Turkey
| | - E. Esin Hames
- Bioengineering Department, Engineering Faculty, Ege University, Bornova-Izmir, Turkey
| | - Fazilet Vardar-Sukan
- Bioengineering Department, Engineering Faculty, Ege University, Bornova-Izmir, Turkey
| |
Collapse
|
37
|
Bedade DK, Muley AB, Singhal RS. Magnetic cross-linked enzyme aggregates of acrylamidase from Cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. BIORESOURCE TECHNOLOGY 2019; 272:137-145. [PMID: 30336395 DOI: 10.1016/j.biortech.2018.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Acrylamidase from Cupriavidus oxalaticus ICTDB921 was immobilized on magnetic nanoparticles (MNPs) for degradation of acrylamide (a group 2A carcinogen and an environmental contaminant) from industrial waste water. Acrylamidase-MNPs were prepared (maximum recovery ∼94%) at optimized process parameters viz. 1.5:1 (v/v) of acetone: crude acrylamidase/5 mM of glutaraldehyde/90 min/1.5:1 of enzyme: MNP ratio. MNPs and acrylamidase-MNPs were characterized by particle size analysis, FTIR, XRD, SEM and vibrating sample magnetometer. Acrylamidase-MNPs showed a shift in optimum pH (8-8.5) and temperature (60-65 °C) with higher pH/thermal stability vis-à-vis free enzyme. A significant increase in kinetic constants, thermal inactivation constants and thermodynamic parameters were noted for acrylamidase-MNPs. A complete degradation of acrylamide ∼2100 mg/L was achieved in industrial waste water under optimized conditions for batch process and the kinetics was best represented by Haldane model. Acrylamidase-MNPs retained >80% of its initial activity after 4 cycles for both pure acrylamide and industrial waste water.
Collapse
Affiliation(s)
- Dattatray K Bedade
- Department of Food Engineering and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400 019, India
| | - Abhijeet B Muley
- Department of Food Engineering and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400 019, India
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400 019, India.
| |
Collapse
|
38
|
Kinetic and thermodynamic characterization of a novel Aspergillus aculeatus URM4953 polygalacturonase. Comparison of free and calcium alginate-immobilized enzyme. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
A tri-enzyme co-immobilized magnetic complex: Process details, kinetics, thermodynamics and applications. Int J Biol Macromol 2018; 118:1781-1795. [DOI: 10.1016/j.ijbiomac.2018.07.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/14/2018] [Accepted: 07/07/2018] [Indexed: 01/09/2023]
|
40
|
Patil PD, Yadav GD. Rapid In Situ Encapsulation of Laccase into Metal-Organic Framework Support (ZIF-8) under Biocompatible Conditions. ChemistrySelect 2018. [DOI: 10.1002/slct.201702852] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pravin D. Patil
- Department of Chemical Engineering; Institute of Chemical Technology, Nathalal Parekh Marg, Matunga; Mumbai- 400019 INDIA
| | - Ganapati D. Yadav
- Department of Chemical Engineering; Institute of Chemical Technology, Nathalal Parekh Marg, Matunga; Mumbai- 400019 INDIA
| |
Collapse
|
41
|
de Sena AR, Campos Leite TC, Evaristo da Silva Nascimento TC, Silva ACD, Souza CS, Vaz AFDM, Moreira KA, de Assis SA. Kinetic, thermodynamic parameters and in vitro digestion of tannase from Aspergillus tamarii URM 7115. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1452201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amanda Reges de Sena
- Microbiology Laboratory, Federal Institute of Education, Science and Technology of Pernambuco, Barreiros, Pernambuco, Brazil
| | - Tonny Cley Campos Leite
- Microbiology Laboratory, Federal Institute of Education, Science and Technology of Pernambuco, Barreiros, Pernambuco, Brazil
| | | | - Anna Carolina da Silva
- Central Laboratory of Garanhuns, Laboratory of Biotechnology, Academic Unit of Garanhuns, Federal Rural University of Pernambuco, Garanhuns, Pernambuco, Brazil
| | - Catiane S. Souza
- Laboratory of Enzymology, Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - Keila Aparecida Moreira
- Central Laboratory of Garanhuns, Laboratory of Biotechnology, Academic Unit of Garanhuns, Federal Rural University of Pernambuco, Garanhuns, Pernambuco, Brazil
| | - Sandra Aparecida de Assis
- Laboratory of Enzymology, Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| |
Collapse
|
42
|
Soares da Silva O, Lira de Oliveira R, de Carvalho Silva J, Converti A, Souza Porto T. Thermodynamic investigation of an alkaline protease from Aspergillus tamarii URM4634: A comparative approach between crude extract and purified enzyme. Int J Biol Macromol 2018; 109:1039-1044. [DOI: 10.1016/j.ijbiomac.2017.11.081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|
43
|
da Silva VG, de Castro RJS. Biocatalytic action of proteases in ionic liquids: Improvements on their enzymatic activity, thermal stability and kinetic parameters. Int J Biol Macromol 2018; 114:124-129. [PMID: 29567497 DOI: 10.1016/j.ijbiomac.2018.03.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/16/2018] [Accepted: 03/17/2018] [Indexed: 11/27/2022]
Abstract
This study evaluated the effect of the addition of the following ionic liquids (IL): choline chloride (CC), tetramethylammonium bromide (TB) and 1‑ethyl‑3‑methylimidazolium bromide (EM), on some biochemical properties including enzymatic activity and different kinetic parameters of commercial proteases. The enzyme-IL combinations that showed the highest increases in enzyme activities were as follows: CC (0.5mM) and Neutrase® 0.8L; CC (5mM) and Flavourzyme® 500L; TB (2000mM) and Alcalase® 2.4L, with relative increases of 20, 15 and 150% in protease activities, respectively, compared to the control assays. The combination TB and Alcalase® 2.4L showed a reduction of 50% of the activation energy (Ea), an increase of the relation Vmax/Km of 35% and a 16-fold rise in the values of t1/2, and D. Neutrase® 0.8L combined with CC showed an increase of 20% in the relation Vmax/Km. The combination Flavourzyme® 500L and CC presented a 20% higher value of the relation Vmax/Km and a 2-fold increase in the values of t1/2 and D compared to the control assay. In summary, the most positive effects observed in this study included proteases with improved activity and stability properties and a greater affinity for the substrate.
Collapse
Affiliation(s)
- Vítor Geniselli da Silva
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil.
| |
Collapse
|
44
|
Muley AB, Chaudhari SA, Mulchandani KH, Singhal RS. Extraction and characterization of chitosan from prawn shell waste and its conjugation with cutinase for enhanced thermo-stability. Int J Biol Macromol 2018; 111:1047-1058. [PMID: 29366886 DOI: 10.1016/j.ijbiomac.2018.01.115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/01/2018] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
The present article describes extraction of chitosan from prawn shells waste and its application in thermal stabilization of Fusarium sp. ICT SAC1 cutinase by non-covalent and covalent conjugation. Extracted chitosan represented 78.40% degree of deacetylation (DDA), a molecular weight of 173 kDa and was soluble in 1% acetic acid with 2.8 ± 0.15% insoluble matter. The structural (FTIR, NMR and XRD) and thermal characterization (DSC and TGA) indicated unique properties for chitosan. Plausible chitosan structure was also deduced. The water and fat binding capacities were 923% and 598.05% while 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 1,1-diphenyl-2-picrylhydrzyl radicals scavenging activity was 60.62 and 11.83 μM Trolox-Equivalent/ml. The Km and Vmax values of free cutinase were 0.82 mM and 20.64 mM/min which increased by 14.63 and 17.07%; and 27.18 and 43.94% after non-covalent and covalent conjugation, respectively. A marginal increment in thermal inactivation constants and energy (kd, t1/2, D and Ed value) were also noticed for cutinase-chitosan conjugates. The enthalpy, free energy and entropy values increased marginally in covalent conjugate vis-à-vis non-covalent conjugated and free cutinase. A reduction in α-helix, random coils and β-sheets content was noted after conjugation.
Collapse
Affiliation(s)
- Abhijeet B Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Sandeep A Chaudhari
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Ketan H Mulchandani
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
45
|
Banerjee G, Ray AK. Impact of microbial proteases on biotechnological industries. Biotechnol Genet Eng Rev 2017; 33:119-143. [DOI: 10.1080/02648725.2017.1408256] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Goutam Banerjee
- Department of Zoology, Visva-Bharati University, Santiniketan, India
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Arun Kumar Ray
- Department of Zoology, Visva-Bharati University, Santiniketan, India
| |
Collapse
|
46
|
Gomaa M, Hifney AF, Fawzy MA, Abdel-Gawad KM. Statistical Optimization of Culture Variables for Enhancing Agarase Production by Dendryphiella arenaria Utilizing Palisada perforata (Rhodophyta) and Enzymatic Saccharification of the Macroalgal Biomass. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:592-600. [PMID: 29080933 DOI: 10.1007/s10126-017-9778-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Agarase is a promising biocatalyst for several industrial applications. Agarase production was evaluated by the marine fungus Dendryphiella arenaria utilizing Palisada perforata as a basal substrate in semi-solid state fermentation. Seaweed biomass, glucose, and sucrose were the most significant parameters affecting agarase production, and their levels were further optimized using Box-Behnken design. The maximum agarase activity was 7.69 U/mL. Agarase showed a degree of thermostability with half-life of 99 min at 40 °C, and declining to 44.72 min at 80 °C. Thermodynamics suggested an important process of protein aggregation during thermal inactivation. Additionally, the enzymatic saccharification of the seaweed biomass using crude agarase was optimized with respect to biomass particle size, solid/liquid ratio, and enzyme loadings. The amount of biosugars obtained after optimization was 26.15 ± 1.43 mg/g. To the best of our knowledge, this is the first report on optimization of agarase in D. arenaria.
Collapse
Affiliation(s)
- Mohamed Gomaa
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Awatief F Hifney
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Mustafa A Fawzy
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Khayria M Abdel-Gawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
47
|
Muley AB, Chaudhari SA, Singhal RS. Non-covalent conjugation of cutinase from Fusarium sp. ICT SAC1 with pectin for enhanced stability: Process minutiae, kinetics, thermodynamics and structural study. Int J Biol Macromol 2017; 102:729-740. [DOI: 10.1016/j.ijbiomac.2017.04.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022]
|
48
|
Abdel-Naby MA, El-Refai HA, Ibrahim MHA. Structural characterization, catalytic, kinetic and thermodynamic properties of Keratinase from Bacillus pumilus FH9. Int J Biol Macromol 2017; 105:973-980. [PMID: 28743569 DOI: 10.1016/j.ijbiomac.2017.07.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022]
Abstract
Bacillus pumilus FH9 keratinase was purified to homogeneity with a 59.9% yield through a series of three steps. The purified enzyme was a monomeric protein with a molecular mass around 50kDa and containing 7.3% carbohydrates. The pure B. pumilus FH9 keratinase was optimally active at pH 9.0 and 60°C. The calculated activation energy for keratin hydrolysis was 24.52kJmol-1 and its temperature quotient (Q10) was 1.19. The calculated values of thermodynamic parameters for keratin hydrolysis were as follows: ΔH*=21.75kJmol-1, ΔG*=65.86kJmol-1 ΔS*=-132.46Jmol-1K-1, (ΔG*E-S)=4.74kJmol-1 and ΔG*E-T=-11.254kJmol-1. The pure keratinase exhibited Km, Vmax, kcat and kcat/Km of 5.55mg/ml keratin, 5882Umgprotein-1 323.54s-1 and 58.28 (s-1/mgml-1). The calculated half-life time at 50, 60, 70 and 80°C was 90.69, 59.1, 16.62 and 9.48min, respectively. Similarly, the thermodynamic parameters for irreversible thermal inactivation at temperature ranging from 50 to 80°C were determined. The pure enzyme was stimulated by Ca2+ and Mg2+. However, Zn2+, EDTA, Co2+ and Hg2+ significantly inhibited the enzyme activity. The purified enzyme was able to hydrolyze different substrates showing its higher proteolytic activity on casein, bovine serum albumin, and collagen, followed by feather, horn and wool.
Collapse
Affiliation(s)
- Mohamed A Abdel-Naby
- Department of Chemistry of Natural and Microbial Products, National Research Center, 12311, Dokki, Cairo, Egypt.
| | - Heba A El-Refai
- Department of Chemistry of Natural and Microbial Products, National Research Center, 12311, Dokki, Cairo, Egypt
| | - Mohammad H A Ibrahim
- Department of Chemistry of Natural and Microbial Products, National Research Center, 12311, Dokki, Cairo, Egypt
| |
Collapse
|
49
|
Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol 2017; 101:383-397. [PMID: 28315440 DOI: 10.1016/j.ijbiomac.2017.03.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/23/2017] [Accepted: 03/10/2017] [Indexed: 11/20/2022]
Abstract
In this study, we aimed to optimize the cultural and nutritional conditions for protease production by Lysinibacillus fusiformis strain C250R in submerged fermentation process using statistical methodology. The most significant factors (gruel, wheat bran, yeast extract, and FeSO4) were identified by Plackett-Burman design. Response surface methodology (RSM) was used to determine the optimum levels of the screened factors and their interaction. Under the optimized conditions, protease yield 3100U/mL was 4.5 folds higher than those obtained by the use of the initial conditions (680U/mL). Additionally, a new extracellular 51kDa-protease, designated SAPLF, was purified and biochemically characterized from strain C250R. It shows optimum activity at 70°C and pH 10. Its half-life times at 70 and 80°C were 10 and 6-h, respectively. Irreversible inhibition of enzyme activity of SAPLF with serine protease inhibitors demonstrated that it belongs to the serine protease family. Interestingly, its catalytic efficiency was higher than that of SPVP from Aeribacillus pallidus strain VP3 and Alcalase Ultra 2.5L from Bacillus licheniformis. This study demonstrated that SAPLF has a high detergent compatibility and an excellent stain removal compared to Alcalase Ultra 2.5L; which offers an interesting potential for its application in the laundry detergent industry.
Collapse
|
50
|
Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Penaeus vannamei suitable for food and detergent industries. Food Chem 2016; 202:110-5. [DOI: 10.1016/j.foodchem.2016.01.104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 11/21/2022]
|