1
|
Meshram V, Thakur P, Jadhav SK, Chandrawanshi NK. GC-MS Analysis of Polysaccharides from an Intergeneric Hybrid of Pleurotus florida and Cordyceps militaris: A Comparative Study. Appl Biochem Biotechnol 2025; 197:1805-1830. [PMID: 39612074 DOI: 10.1007/s12010-024-05121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Edible and medicinal mushrooms are valuable sources of polysaccharides, known for their dual roles as immunostimulants and immunosuppressants. This study aimed to enhance polysaccharide content by fusing two mushroom species, P. florida and C. militaris, while exploring their antioxidant and antibacterial potential. These mushrooms have diverse health benefits, including lowering high cholesterol, providing anti-inflammatory effects, supporting diabetes management, aiding in cancer treatment, and enhancing the efficacy of COVID-19 vaccines. Successful hyphal fusion was achieved, and optimal culture conditions were determined using response surface methodology. The hybrids exhibited superior growth compared to the parental strains. Hyphal fusion improved several attributes, resulting in diverse hybrids with increased biomass and metabolite production. FTIR analysis confirmed the presence of exopolysaccharides, with concentrations measured at 28.4 g/L (P1), 31.50 g/L (CD), and 36.74 g/L (F3). GC-MS analysis identified various bioactive metabolites, including a higher concentration of dimethyl palmitamine in the hybrid, a novel compound, butanenitrile, 2-(methoxymethoxy), which was not found in the parental strains. These compounds are likely responsible for the enhanced antimicrobial and antioxidant activities.
Collapse
Affiliation(s)
- Varsha Meshram
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Prachi Thakur
- St. Thomas College, Ruabandha, Bhilai, Durg, Chhattisgarh, 490 006, India
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | | |
Collapse
|
2
|
Berillo D, Malika T, Baimakhanova BB, Sadanov AK, Berezin VE, Trenozhnikova LP, Baimakhanova GB, Amangeldi AA, Kerimzhanova B. An Overview of Microorganisms Immobilized in a Gel Structure for the Production of Precursors, Antibiotics, and Valuable Products. Gels 2024; 10:646. [PMID: 39451299 PMCID: PMC11508006 DOI: 10.3390/gels10100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 10/26/2024] Open
Abstract
Using free microorganisms for industrial processes has some limitations, such as the extensive consumption of substrates for growth, significant sensitivity to the microenvironment, and the necessity of separation from the product and, therefore, the cyclic process. It is widely acknowledged that confining or immobilizing cells in a matrix or support structure enhances enzyme stability, facilitates recycling, enhances rheological resilience, lowers bioprocess costs, and serves as a fundamental prerequisite for large-scale applications. This report summarizes the various cell immobilization methods, including several synthetic (polyvinylalcohol, polyethylenimine, polyacrylates, and Eudragit) and natural (gelatin, chitosan, alginate, cellulose, agar-agar, carboxymethylcellulose, and other polysaccharides) polymeric materials in the form of thin films, hydrogels, and cryogels. Advancements in the production of well-known antibiotics like penicillin and cephalosporin by various strains were discussed. Additionally, we highlighted cutting-edge research related to strain producers of peptide-based antibiotics (polymyxin B, Subtilin, Tyrothricin, varigomycin, gramicidin S, friulimicin, and bacteriocin), glusoseamines, and polyene derivatives. Crosslinking agents, especially covalent linkers, significantly affect the activity and stability of biocatalysts (penicillin G acylase, penicillinase, deacetoxycephalosporinase, L-asparaginase, β-glucosidase, Xylanase, and urease). The molecular weight of polymers is an important parameter influencing oxygen and nutrient diffusion, the kinetics of hydrogel formation, rigidity, rheology, elastic moduli, and other mechanical properties crucial for long-term utilization. A comparison of stability and enzymatic activity between immobilized enzymes and their free native counterparts was explored. The discussion was not limited to recent advancements in the biopharmaceutical field, such as microorganism or enzyme immobilization, but also extended to methods used in sensor and biosensor applications. In this study, we present data on the advantages of cell and enzyme immobilization over microorganism (bacteria and fungi) suspension states to produce various bioproducts and metabolites-such as antibiotics, enzymes, and precursors-and determine the efficiency of immobilization processes and the optimal conditions and process parameters to maximize the yield of the target products.
Collapse
Affiliation(s)
- Dmitriy Berillo
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan;
- Department of Pharmaceutical and Toxicological Chemistry, School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Turganova Malika
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan;
| | - Baiken B. Baimakhanova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Amankeldi K. Sadanov
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Vladimir E. Berezin
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Lyudmila P. Trenozhnikova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Gul B. Baimakhanova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Alma A. Amangeldi
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | | |
Collapse
|
3
|
Lin SP, Sung TH, Angkawijaya AE, Go AW, Hsieh CW, Hsu HY, Santoso SP, Cheng KC. Enhanced exopolysaccharide production of Cordyceps militaris via mycelial cell immobilization on plastic composite support in repeated-batch fermentation. Int J Biol Macromol 2023; 250:126267. [PMID: 37567526 DOI: 10.1016/j.ijbiomac.2023.126267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Repeated-batch fermentation with fungal mycelia immobilized in plastic composite support (PCS) eliminates the lag phase during fermentation and improves metabolite productivity. The strategy is implemented herein, and a novel modified PCS is developed to enhance exopolysaccharide (EPS) production from the medicinal fungus Cordyceps militaris. A modified PCS (SYE + PCS) was made by compositing polypropylene (PP) with a nutrient mixture containing soybean hull, peptone, yeast extract, and minerals (SYE+). The use of SYE + PCS has consistent cell productivity throughout the multiple fermentation cycles, which resulted in a more higher cell productivity after second batch compared to unmodified PCS. The cell grown on SYE + PCS also generates a higher yield of EPS (3.36, 6.93, and 5.72 g/L in the first, second, and third fermentation cycles, respectively) up to three-fold higher than the cell immobilized on unmodified PCS. It is also worth noting that the EPS from mycelium grown on SYE + PCS contains up to 2.3-fold higher cordycepin than those on unmodified PCS. The presence of nutrients in SYE + PCS also affects the hydrophobicity and surface roughness of the PC, improving mycelial cell adhesion. This study also provides a preliminary antioxidant activity assessment of EPS from immobilized C. militaris grown with SYE + PCS.
Collapse
Affiliation(s)
- Shin-Ping Lin
- School of Food Safety, Taipei Medical University, #250, Wuxing Street, Xinyi Dist., Taipei 11042, Taiwan; Research Center of Biomedical Device, Taipei Medical University, #250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei 11031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, Taipei Medical University, #250 Wu-Hsing Street, Taipei 11031, Taiwan; Taiwan Institute of Food Science and Technology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ting-Hsuan Sung
- Institute of Food Science and Technology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; School of Nutrition and Health Sciences, Taipei Medical University, #250 Wu-Hsing Street, Taipei 11031, Taiwan
| | | | - Alchris Woo Go
- Department of Chemical Engineering, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 40227, Taiwan; Department of Medical Research, China Medical University Hospital, North Dist., Taichung City 404333, Taiwan; Taiwan Institute of Biotechnology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia.
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| |
Collapse
|
4
|
Performance of Biomass and Exopolysaccharide Production from the Medicinal Mushroom Ganoderma lucidum in a New Fabricated Air-L-Shaped Bioreactor (ALSB). Processes (Basel) 2023. [DOI: 10.3390/pr11030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Conventional stirred-tank bioreactor (STR) designs are optimised for cultures of bacteria but not fungal cultures; therefore, a new Air-L-Shaped Bioreactor (ALSB) was fabricated. The ALSB was designed to eliminate the wall growth and clumping of fungal mycelium in STRs. Ganoderma lucidum was used as a fungal model and its biomass and exopolysaccharide (EPS) production were maximised by optimising the agitation rate, glucose concentration, initial pH, and aeration via response surface methodology (RSM). The ALSB system generated 7.8 g/L of biomass (biomass optimised conditions: 110 rpm, 24 g/L glucose, pH 5.6, and 3 v/v of aeration) and 4.4 g/L of EPS (EPS optimised conditions: 90 rpm, 30 g/L glucose, pH 4, and 2.5 v/v of aeration). In combination, for both optimised conditions, biomass (7.9 g/L) and EPS (4.6 g/L) were produced at 110 rpm, 30 g/L glucose, pH 4, and 3 v/v of aeration with minimal wall growth. The data prove that the ALSB is a blueprint for efficient economical fungal cultivation.
Collapse
|
5
|
Usuldin SRA, Wan-Mohtar WAAQI, Ilham Z, Jamaludin AA, Abdullah NR, Rowan N. In vivo toxicity of bioreactor-grown biomass and exopolysaccharides from Malaysian tiger milk mushroom mycelium for potential future health applications. Sci Rep 2021; 11:23079. [PMID: 34845290 PMCID: PMC8629991 DOI: 10.1038/s41598-021-02486-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
Natural mycelial biomass (MB) and exopolysaccharides (EPS) of Malaysian tiger milk mushroom Lignosus rhinocerus are considered high-end components due to their high commercial potential value in drug discovery. This study aims to evaluate the toxicity of the mushroom extracts' generated in a bioreactor using the zebrafish embryo toxicity (ZFET) model assay as a new therapy for treating asthma. Both MB and EPS extracts, at concentrations 0.16-10 mg/mL, were tested for ZFET and early development effects on Zebrafish Embryos (ZE) during 24-120 h post-fertilisation (HPF). Findings revealed that MB was deemed safe with an LC50 of 0.77 mg/mL; the EPS were non-toxic (LC50 of 0.41 mg/mL). Neither MB nor EPS delayed hatching nor teratogenic defects in the treated ZE at a 2.5 mg/mL dose. There were no significant changes in the ZE heart rate after treatments with MB (130 beats/min) and EPS (140 beats/min), compared to that of normal ZE (120-180 beats/min). Mixing both natural compounds MB and EPS did not affect toxicity using ZFET testing; thus, intimating their safe future use as therapeutic interventions. This represents the first study to have used the ZFET assay on MB and EPS extracts of L. rhinocerus for future health applications.
Collapse
Affiliation(s)
- Siti Rokhiyah Ahmad Usuldin
- Agro-Biotechnology Institute, Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIMB), c/o HQ MARDI, 43400, Serdang, Selangor, Malaysia.,Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Bioresources and Bioprocessing Research Group, Institute of Biological Sciences, Faculty of Sciences, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Zul Ilham
- Bioresources and Bioprocessing Research Group, Institute of Biological Sciences, Faculty of Sciences, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adi Ainurzaman Jamaludin
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Raihan Abdullah
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland. .,Empower Eco Innovation Hub, Boora, Co. Offaly, Ireland.
| |
Collapse
|
6
|
Deng Y, Huang Q, Hu L, Liu T, Zheng B, Lu D, Guo C, Zhou L. Enhanced exopolysaccharide yield and antioxidant activities of Schizophyllum commune fermented products by the addition of Radix Puerariae. RSC Adv 2021; 11:38219-38234. [PMID: 35498081 PMCID: PMC9044015 DOI: 10.1039/d1ra06314f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
To increase the production of exopolysaccharides (EPS) and expand the application of Schizophyllum commune (S. commune) fermentation liquid, the traditional Chinese medicine Radix Puerariae (RP) with outstanding biological activity was selected as a culture additive to improve the EPS yield and enhance the antioxidant activity of fermented products from S. commune. The effects of three independent factors: A: initial pH (5.0-6.0), B: concentration of RP (10-14 g L-1), and C: inoculum size (8-12%, v/v) on the EPS yield were evaluated. The results of response surface methodology (RSM) showed that the optimal fermentation conditions were: A: 5.40, B: 12.80 g L-1, and C: 10.0%. The optimal yield of EPS was 8.41 ± 0.12 mg mL-1, which showed an insignificant (p > 0.05) difference with the predicted value (8.45 mg mL-1). The fermented supernatants cultured from RP-supplemented medium (SC-RP) or regular medium (SC) were collected for further study. FT-IR analysis of EPS-1 (purified from SC) and EPS-2 (purified from SC-RP) showed that their structures were consistent, indicating that the addition of RP did not affect the structure of schizophyllan (SPG). In addition, compared with SC, the in vitro antioxidant activities of SC-RP were significantly improved with ORAC values and FRAP values increasing by 11.56-fold and 14.69-fold, respectively. There was a significant correlation among the phenolic compounds, flavonoids, and antioxidant activity of SC-RP in this study. Besides, SC-RP was detected to contain more than 25 bioactive ingredients compared with that of SC, which may play a key role in its antioxidant activities. Thus, these results indicated that RP enhanced the yield of SPG and improved the antioxidant activity of the fermented products by S. commune. Accordingly, the fermentation liquid of S. commune with the addition of RP may have potential application in food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yongfei Deng
- School of Light Industry and Food Engineering, Guangxi University Nanning 530004 People's Republic of China
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd Guangzhou 510700 People's Republic of China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China +86-20-39352151 +86-20-39352151
| | - Qian Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China +86-20-39352151 +86-20-39352151
| | - Lu Hu
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd Guangzhou 510700 People's Republic of China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University Nanning 530004 People's Republic of China
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Dengjun Lu
- School of Light Industry and Food Engineering, Guangxi University Nanning 530004 People's Republic of China
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd Guangzhou 510700 People's Republic of China
| | - Lin Zhou
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China +86-20-39352151 +86-20-39352151
| |
Collapse
|
7
|
Balamurugan JP, Supramani S, Ahmad Usuldin SR, Ilham Z, Klaus A, Khairul Ikram NK, Ahmad R, Wan-Mohtar WAAQI. Efficient biomass-endopolysaccharide production from an identified wild-Serbian Ganoderma applanatum strain BGS6Ap mycelium in a controlled submerged fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Mooralitharan S, Hanafiah ZM, Manan TSBA, Hasan HA, Jensen HS, Wan-Mohtar WAAQI, Mohtar WHMW. Optimization of mycoremediation treatment for the chemical oxygen demand (COD) and ammonia nitrogen (AN) removal from domestic effluent using wild-Serbian Ganoderma lucidum (WSGL). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12686-3. [PMID: 33624249 DOI: 10.1007/s11356-021-12686-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The fungi-based technology, wild-Serbian Ganoderma lucidum (WSGL) as myco-alternative to existing conventional microbial-based wastewater treatment is introduced in this study as a potential alternative treatment. The mycoremediation is highly persistent for its capability to oxidatively breakdown pollutant substrates and widely researched for its medicinal properties. Utilizing the nonhazardous properties and high degradation performance of WSGL, this research aims to optimize mycoremediation treatment design for chemical oxygen demand (COD) and ammonia nitrogen (AN) removal in domestic wastewater based on proposed Model 1 (temperature and treatment time) and Model 2 (volume of pellet and treatment time) via response surface methodology (RSM). Combined process variables were temperature (0C) (Model 1) and the volume of mycelial pellets (%) (Model 2) against treatment time (hour). Response variables for these two sets of central composite design (CCD) were the removal efficiencies of COD (%) and AN (%). The regression line fitted well with the data with R2 values of 0.9840 (Model 1-COD), 0.9477 (Model 1-AN), 0.9988 (Model 2-COD), and 0.9990 (Model 2-AN). The lack of fit test gives the highest value of sum of squares equal to 9494.91 (Model 1-COD), 9701.68 (Model 1-AN), 23786.55 (Model 2-COD), and 13357.02 (Model 2-AN), with probability F values less than 0.05 showing significant models. The optimized temperature for Model 1 was at 25 °C within 24 h of treatment time with 95.1% COD and 96.3% AN removals. The optimized condition (temperature) in Model 1 was further studied in Model 2. The optimized volume of pellet for Model 2 was 0.25% in 24-h treatment time with 76.0% COD and 78.4% AN removals. Overall, the ascended sequence of high volume of pellet considered in Model 2 will slow down the degradation process. The best fit volume of pellet with maximum degradation of COD and AN is equivalent to 0.1% at 25 °C in 24 h. The high performance achieved demonstrates that the mycoremediation of G. lucidum is highly potential as part of the wastewater treatment system in treating domestic wastewater of high organic loadings.
Collapse
Affiliation(s)
- Silambarasi Mooralitharan
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Zarimah Mohd Hanafiah
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Teh Sabariah Binti Abd Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Henriette S Jensen
- Department of Chemical and Biological Engineering, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
9
|
Hassan NA, Supramani S, Azzimi Sohedein MN, Ahmad Usuldin SR, Klaus A, Ilham Z, Chen WH, Wan-Mohtar WAAQI. Efficient biomass-exopolysaccharide production from an identified wild-Serbian Ganoderma lucidum strain BGF4A1 mycelium in a controlled submerged fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Pellet diameter and morphology of European Ganoderma pfeifferi in a repeated-batch fermentation for exopolysaccharide production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Zhang WR, Liu SR, Kuang YB, Zheng SZ. Development of a Novel Spawn (Block Spawn) of an Edible Mushroom, Pleurotus ostreatus, in Liquid Culture and its Cultivation Evaluation. MYCOBIOLOGY 2019; 47:97-104. [PMID: 30988993 PMCID: PMC6450586 DOI: 10.1080/12298093.2018.1552648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 06/01/2023]
Abstract
Mushroom cultivation has gained increased attention in recent years. Currently, only four types of spawn, including sawdust spawn, grain spawn, liquid spawn, and stick spawn, are commonly available for mushroom cultivation. This limited spawn diversity has led to difficulty in selecting suitable inoculum materials in some cultivation. In this study, three small blocks of lignocellulosic agro-wastes and one block of a synthetic matrix were prepared as support for growing Pleurotus ostreatus in liquid medium. Mycelium-adsorbed blocks were then evaluated for their potential as block spawn for fructification. Our results indicated that the edible fungus was adsorbed and abundantly grew internally and externally on loofah sponge and synthetic polyurethane foam (PUF) supports and also has the ability to attach and grow on the surface of sugarcane bagasse and corncob supports. The mycelia of P. ostreatus adhered on corncob exhibited the highest metabolic activity, while those on the PUF showed the least activity. Mycelial extension rates of block spawns made of agro-waste materials were comparable to that of sawdust spawn, but the block spawn of PUF showed a significantly lower rate. No significant differences in cropping time and yield were observed among cultivations between experimental block spawns and sawdust spawns. Moreover, the corncob block spawn maintained its fruiting potential during an examined period of 6-month storage. The developed block spawn could be practically applied in mushroom cultivation.
Collapse
Affiliation(s)
- Wei-Rui Zhang
- College of Life Science, Ningde Normal University, Ningde, PR China;
- Fujian Higher Education Research Center for Local Biological Resources, Ningde, PR China
| | - Sheng-Rong Liu
- College of Life Science, Ningde Normal University, Ningde, PR China;
- Fujian Higher Education Research Center for Local Biological Resources, Ningde, PR China
| | - Yun-Bo Kuang
- College of Life Science, Ningde Normal University, Ningde, PR China;
- Fujian Higher Education Research Center for Local Biological Resources, Ningde, PR China
| | - Shi-Zhong Zheng
- College of Life Science, Ningde Normal University, Ningde, PR China;
- Fujian Higher Education Research Center for Local Biological Resources, Ningde, PR China
| |
Collapse
|
12
|
Supramani S, Ahmad R, Ilham Z, Annuar MSM, Klaus A, Wan-Mohtar WAAQI. Optimisation of biomass, exopolysaccharide and intracellular polysaccharide production from the mycelium of an identified Ganoderma lucidum strain QRS 5120 using response surface methodology. AIMS Microbiol 2019; 5:19-38. [PMID: 31384700 PMCID: PMC6646932 DOI: 10.3934/microbiol.2019.1.19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/16/2019] [Indexed: 12/04/2022] Open
Abstract
Wild-cultivated medicinal mushroom Ganoderma lucidum was morphologically identified and sequenced using phylogenetic software. In submerged-liquid fermentation (SLF), biomass, exopolysaccharide (EPS) and intracellular polysaccharide (IPS) production of the identified G.lucidum was optimised based on initial pH, starting glucose concentration and agitation rate parameters using response surface methodology (RSM). Molecularly, the G. lucidum strain QRS 5120 generated 637 base pairs, which was commensurate with related Ganoderma species. In RSM, by applying central composite design (CCD), a polynomial model was fitted to the experimental data and was found to be significant in all parameters investigated. The strongest effect (p < 0.0001) was observed for initial pH for biomass, EPS and IPS production, while agitation showed a significant value (p < 0.005) for biomass. By applying the optimized conditions, the model was validated and generated 5.12 g/L of biomass (initial pH 4.01, 32.09 g/L of glucose and 102 rpm), 2.49 g/L EPS (initial pH 4, 24.25 g/L of glucose and 110 rpm) and 1.52 g/L of IPS (and initial pH 4, 40.43 g/L of glucose, 103 rpm) in 500 mL shake flask fermentation. The optimized parameters can be upscaled for efficient biomass, EPS and IPS production using G. lucidum.
Collapse
Affiliation(s)
- Sugenendran Supramani
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rahayu Ahmad
- Halal Action Laboratory, Kolej Permata Insan, University Sains Islam Malaysia, Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Zul Ilham
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Anita Klaus
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Mesquita RA, Hassemer G, Marchiori V, Kiedis J, Valduga E, Junges A, Malvessi E, Cansian RL, Zeni J. Synthesis of Xanthan Gum from Xanthomonas campestrisImmobilized in Polyurethane. Ind Biotechnol (New Rochelle N Y) 2018. [DOI: 10.1089/ind.2018.0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Raíza A. Mesquita
- Department of Food Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| | - Guilherme Hassemer
- Department of Food Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| | - Vinicíus Marchiori
- Department of Food Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| | - José Kiedis
- Department of Food Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| | - Eunice Valduga
- Department of Food Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| | - Alexander Junges
- Department of Food Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| | - Eloane Malvessi
- Biotechnology Institute, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Rogério Luis Cansian
- Department of Food Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| | - Jamile Zeni
- Department of Food Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Wan-Mohtar WAAQI, Viegelmann C, Klaus A, Lim SAH. Antifungal-demelanizing properties and RAW264.7 macrophages stimulation of glucan sulfate from the mycelium of the mushroom Ganoderma lucidum. Food Sci Biotechnol 2017; 26:159-165. [PMID: 30263523 PMCID: PMC6049470 DOI: 10.1007/s10068-017-0021-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/08/2016] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
Underutilized mycelium of Ganoderma lucidum BCCM 31549 has been a significant source of a glucan sulfate (GS) possessing therapeutic activities. GS have been evaluated for their antifungaldemelanizing properties and nitrite oxide production from stimulated RAW264.7 macrophages. GS exhibited antifungal activity against Aspergillus niger A60 with a minimum inhibitory concentration of 60 mg/mL and a minimum fungicidal concentration of 100 mg/mL. At 60mg/mL (sublethal) and 30mg/mL (subinhibitory) doses of GS, the mycelium of A. niger A60 was successfully demelanized with a conidiophore head and black pigment reduction. Additionally, GS successfully stimulated RAW264.7 macrophage cells at a concentration of 500 μg/mL to produce 0.45 μM of nitric oxide. The GS-stimulated RAW264.7 macrophages were morphologically similar to those treated with lipopolysaccharide. The results highlight a novel bifunctional property of mycelial GS from G. lucidum.
Collapse
Affiliation(s)
- Wan Abd Al Qadr Imad Wan-Mohtar
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603 Malaysia
- Fermentation Centre, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, U.K. G4 0RE UK
- Mushroom Research Centre, University of Malaya, Kuala Lumpur, 50603 Malaysia
| | - Christina Viegelmann
- Fermentation Centre, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, U.K. G4 0RE UK
| | - Anita Klaus
- Institute for Food Technology and Biochemistry, University of Belgrade - Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia
| | - Sarina Abdul Halim Lim
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|