1
|
Hashemi Shahraki F, Evazzadeh N, Aminzadeh S. Heterologous expression, purification, and biochemical characterization of protease 3075 from Cohnella sp. A01. PLoS One 2024; 19:e0310910. [PMID: 39680596 DOI: 10.1371/journal.pone.0310910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/09/2024] [Indexed: 12/18/2024] Open
Abstract
Proteases as one of the most significant categories of commercial enzymes, serve nowadays as the key ingredients in detergent formulations. Therefore, identifying detergent-compatible proteases with better properties is a continuous exercise. Accordingly, we were interested in the recombinant production and characterization of protease 3075 as a novel enzyme from thermophilic indigenous Cohnella sp. A01. The biochemical and structural features of the protease were probed by employing bioinformatic methods and in vitro studies. The bioinformatics analysis discovered that protease 3075 belongs to the C56-PfpI superfamily. The protease 3075 gene was cloned and heterologous expressed in Escherichia coli (E. coli) BL21. It was found that the enzyme contains 175 amino acids and 525 bp with a molecular weight of 19 kDa. Protease 3075 revealed acceptable activity in the range of 40-80°C and pH 5.5-8. The optimum activity of the enzyme was observed at 70°C and pH 6. The activity of protease 3075 increased about 4-fold in the presence of Tween 80 and acetone, while its activity attenuated in the presence of iodoacetic acid and iodoacetamide. Docking analyses revealed the dominant interaction between Tween 80 and protease 3075, mediated by hydrogen bonds and Van der Waals forces. Furthermore, molecular dynamics simulations (MDS) showed that Tween 80 increased the stability of the protease 3075 structure. Altogether, our data provided a novel enzyme by genetic manipulation process that could have significant industrial applications.
Collapse
Affiliation(s)
- Fatemeh Hashemi Shahraki
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Narges Evazzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
2
|
Bhuimbar MV, Jalkute CB, Bhagwat PK, Dandge PB. Purification, characterization and application of collagenolytic protease from Bacillus subtilis strain MPK. J Biosci Bioeng 2024; 138:21-28. [PMID: 38637241 DOI: 10.1016/j.jbiosc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/10/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
A new extracellular protease from Bacillus subtilis strain MPK with collagenolytic activity was isolated and purified. Fish skin which otherwise would be treated as waste is used as substrate for the production of protease. Using various techniques such as ammonium sulphate precipitation and ion exchange chromatography, protease was purified and characterized subsequently. Protease of approximately 61 kDa molecular weight was purified by 135.7-fold with 18.42% enzyme recovery. The protease showed effective properties like pH and temperature stability over a broad range with optimum pH 7.5 and temperature 60 °C. Km and Vmax were found to be 1.92 mg ml-1 and 1.02 × 10-4 mol L-1 min-1, respectively. The protease exhibited stability in various ions, surfactants, inhibitors and organic solvents. Subsequently, the protease was successfully utilized for collagen hydrolysis to generate collagen peptides; thus, the produced protease would be a potential candidate for multifaceted applications in food and pharmaceutical industries due to its significant characteristics and collagenolytic properties.
Collapse
Affiliation(s)
- Madhuri Vijay Bhuimbar
- PG Department of Microbiology & Research Center, Shri Shivaji Mahavidyalaya, Barshi 413411, MS, India
| | - Chidambar Balbhim Jalkute
- PG Department of Microbiology & Research Center, Shri Shivaji Mahavidyalaya, Barshi 413411, MS, India
| | | | | |
Collapse
|
3
|
Isolation and characterization of an activator-dependent protease from Aspergillus ochraceus screened from low denatured defatted soybean meal and the proteolysis of soy proteins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Identification of a Novel Thermostable Alkaline Protease from Bacillus megaterium-TK1 for the Detergent and Leather Industry. BIOLOGY 2020; 9:biology9120472. [PMID: 33339223 PMCID: PMC7765983 DOI: 10.3390/biology9120472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
Simple Summary In the current investigation, we describe the characteristic features of a novel Bacillus megaterium bacterium-derived protease with excellent thermostable enzyme activity under stringent alkaline conditions. The protease is highly compatible with various detergents and thus appears to be an eco-friendly additive for a variety of industrial applications. Abstract An increased need by the green industry for enzymes that can be exploited for eco-friendly industrial applications led us to isolate and identify a unique protease obtained from a proteolytic Bacillus megaterium-TK1 strain from a seawater source. The extracellular thermostable serine protease was processed by multiple chromatography steps. The isolated protease displayed a relative molecular weight (MW) of 33 kDa (confirmed by zymography), optimal enzyme performance at pH 8.0, and maximum enzyme performance at 70 °C with 100% substrate specificity towards casein. The proteolytic action was blocked by phenylmethylsulfonyl fluoride (PMSF), a serine hydrolase inactivator. Protease performance was augmented by several bivalent metal cations. The protease tolerance was studied under stringent conditions with different industrial dispersants and found to be stable with Surf Excel, Tide, or Rin detergents. Moreover, this protease could clean blood-stained fabrics and showed dehairing activity for cow skin with significantly reduced pollution loads. Our results suggest that this serine protease is a promising additive for various eco-friendly usages in both the detergent and leather industries.
Collapse
|
5
|
Tarrahimofrad H, Meimandipour A, Arjmand S, Beigi Nassiri M, Jahangirian E, Tavana H, Zamani J, Rahimnahal S, Aminzadeh S. Structural and biochemical characterization of a novel thermophilic Coh01147 protease. PLoS One 2020; 15:e0234958. [PMID: 32574185 PMCID: PMC7310833 DOI: 10.1371/journal.pone.0234958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/03/2020] [Indexed: 01/28/2023] Open
Abstract
Proteases play an essential role in living organisms and represent one of the largest groups of industrial enzymes. The aim of this work was recombinant production and characterization of a newly identified thermostable protease 1147 from thermophilum indigenous Cohnella sp. A01. Phylogenetic tree analysis showed that protease 1147 is closely related to the cysteine proteases from DJ-1/ThiJ/PfpI superfamily, with the conserved catalytic tetrad. Structural prediction using MODELLER 9v7 indicated that protease 1147 has an overall α/β sandwich tertiary structure. The gene of protease 1147 was cloned and expressed in Escherichia coli (E. coli) BL21. The recombinant protease 1147 appeared as a homogenous band of 18 kDa in SDS-PAGE, which was verified by western blot and zymography. The recombinant protein was purified with a yield of approximately 88% in a single step using Ni-NTA affinity chromatography. Furthermore, a rapid one-step thermal shock procedure was successfully implemented to purify the protein with a yield of 73%. Using casein as the substrate, Km, and kcat, kcat/Km values of 13.72 mM, 3.143 × 10−3 (s-1), and 0.381 (M-1 S-1) were obtained, respectively. The maximum protease activity was detected at pH = 7 and 60°C with the inactivation rate constant (kin) of 2.10 × 10–3 (m-1), and half-life (t1/2) of 330.07 min. Protease 1147 exhibited excellent stability to organic solvent, metal ions, and 1% SDS. The protease activity was significantly enhanced by Tween 20 and Tween 80 and suppressed by cysteine protease specific inhibitors. Docking results and molecular dynamics (MD) simulation revealed that Tween 20 interacted with protease 1147 via hydrogen bonds and made the structure more stable. CD and fluorescence spectra indicated structural changes taking place at 100°C, very basic and acidic pH, and in the presence of Tween 20. These properties make this newly characterized protease a potential candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Amir Meimandipour
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran
| | - Mohammadtaghi Beigi Nassiri
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Ehsan Jahangirian
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States of America
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Somayyeh Rahimnahal
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- * E-mail:
| |
Collapse
|
6
|
Aguilar JGDS, Castro RJSD, Sato HH. ALKALINE PROTEASE PRODUCTION BY Bacillus licheniformis LBA 46 IN A BENCH REACTOR: EFFECT OF TEMPERATURE AND AGITATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20180014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Rekik H, Zaraî Jaouadi N, Gargouri F, Bejar W, Frikha F, Jmal N, Bejar S, Jaouadi B. Production, purification and biochemical characterization of a novel detergent-stable serine alkaline protease from Bacillus safensis strain RH12. Int J Biol Macromol 2019; 121:1227-1239. [DOI: 10.1016/j.ijbiomac.2018.10.139] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
8
|
Rekik H, Frikha F, Zaraî Jaouadi N, Gargouri F, Jmal N, Bejar S, Jaouadi B. Gene cloning, expression, molecular modeling and docking study of the protease SAPRH from Bacillus safensis strain RH12. Int J Biol Macromol 2018; 125:876-891. [PMID: 30557638 DOI: 10.1016/j.ijbiomac.2018.12.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
The sapRH gene, which encodes the serine alkaline protease SAPRH, from Bacillus safensis RH12, was isolated and its DNA sequence was determined. The deduced amino-acid sequence showed strong homology with other Bacillus proteases. The highest sequence identity value (97%) was obtained with SAPB from B. pumilus CBS, with only 9 amino-acids of difference. The region, encoding SAPRH was heterologously expressed in E. coli BL21-AI™ cells using GATEWAY™ pDEST™17 expression-vector. The recombinant (His)6-tag enzyme (His6-rSAPRH) was purified in a single affinity chromatography step and its biochemical properties were determined and compared to those of SAPRH and rSAPB. Interestingly, His6-rSAPRH showed improved thermostability compared to SAPRH and rSAPB. The molecular dynamics of SAPRH compared to SAPB revealed a more thermostable structure, thus confirming the in vitro results showing that His6-rSAPRH has a t1/2 of 120 min against 90 and 30 min for SAPRH and rSAPB, respectively, at 70 °C and different kinetic parameters to synthetic peptides. The docking simulations data allow in getting an insight into the involvement of some key amino-acids in substrate binding and account for the selectivity. Overall, this is the first report of a sapRH gene cloned from B. safensis which can be a promising potential candidate for future applications in detergent formulations.
Collapse
Affiliation(s)
- Hatem Rekik
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour, Km 6, P.O. Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; STE JMAL (EJM)-Laundry Detergent Industry, Z.I. Avenue August 13, Z.I. Poudriere 1, P.O. Box 407, Boustene, Sfax 3000, Tunisia
| | - Fakher Frikha
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour, Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Nadia Zaraî Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour, Km 6, P.O. Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Fares Gargouri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour, Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Najah Jmal
- STE JMAL (EJM)-Laundry Detergent Industry, Z.I. Avenue August 13, Z.I. Poudriere 1, P.O. Box 407, Boustene, Sfax 3000, Tunisia
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour, Km 6, P.O. Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour, Km 6, P.O. Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
9
|
Cloning, expression, and characterization of an alkaline protease, AprV, from Vibrio sp. DA1-1. Bioprocess Biosyst Eng 2018; 41:1437-1447. [PMID: 29934784 DOI: 10.1007/s00449-018-1972-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/14/2018] [Indexed: 01/27/2023]
Abstract
A novel alkaline protease (named AprV) gene from Vibrio sp. DA1-1 was cloned and expressed in Escherichia coli BL21 (DE3) pLysS. The sequence analysis showed the highest homology of 68% with the characterized protease from Alkalimonas collagenimarina AC40T. The recombinant AprV was purified with the molecular weight of 28 kDa. The optimum temperature and pH were determined to be 55 °C and 10.0, respectively. The enzyme activity was slightly enhanced by Ca2+, Mg2+, Zn2+, Ba2+, and, however, was highly inhibited by Sn2+ and EDTA. The AprV was stable in the presence of some surfactants and oxidizing agents, such as 1% Tween 20-80, 1% JFC-2, and 5% JFC-2. Casein was found to be the ideal substrate with specific activity of 1139 U/mg. Moreover, we found that AprV (10,000 U), together with commercial detergent, could completely remove the blood on the cotton. Furthermore, AprV also demonstrated dehairing activity on goat and bull skin. These results indicated that the alkaline protease AprV might be a potential candidate for applications in the detergent and leather industries.
Collapse
|