1
|
Sar T, Marchlewicz A, Harirchi S, Mantzouridou FT, Hosoglu MI, Akbas MY, Hellwig C, Taherzadeh MJ. Resource recovery and treatment of wastewaters using filamentous fungi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175752. [PMID: 39182768 DOI: 10.1016/j.scitotenv.2024.175752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Industrial wastewater, often characterized by its proximity to neutral pH, presents a promising opportunity for fungal utilization despite the prevalent preference of fungi for acidic conditions. This review addresses this discrepancy, highlighting the potential of certain industrial wastewaters, particularly those with low pH levels, for fungal biorefinery. Additionally, the economic implications of biomass recovery and compound separation, factors that require explicit were emphasized. Through an in-depth analysis of various industrial sectors, including food processing, textiles, pharmaceuticals, and paper-pulp, this study explores how filamentous fungi can effectively harness the nutrient-rich content of wastewaters to produce valuable resources. The pivotal role of ligninolytic enzymes synthesized by fungi in wastewater purification is examined, as well as their ability to absorb metal contaminants. Furthermore, the diverse benefits of fungal biorefinery are underscored, including the production of protein-rich single-cell protein, biolipids, enzymes, and organic acids, which not only enhance environmental sustainability but also foster economic growth. Finally, the challenges associated with scaling up fungal biorefinery processes for wastewater treatment are critically evaluated, providing valuable insights for future research and industrial implementation. This comprehensive analysis aims to elucidate the potential of fungal biorefinery in addressing industrial wastewater challenges while promoting sustainable resource utilization.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Ariel Marchlewicz
- University of Silesia in Katowice, The Faculty of Natural Science, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland; University of Jyväskylä, The Faculty of Mathematics and Science, The Department of Biological and Environmental Science, Survontie 9c, FI-40500 Jyväskylä, Finland
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran P.O. Box 3353-5111, Iran
| | - Fani Th Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Muge Isleten Hosoglu
- Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Türkiye
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli 41400, Türkiye
| | - Coralie Hellwig
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | | |
Collapse
|
2
|
Jiang H, Wang F, Ma R, Yang T, Liu C, Shen W, Jin W, Tian Y. Advances in valorization of sweet potato peels: A comprehensive review on the nutritional compositions, phytochemical profiles, nutraceutical properties, and potential industrial applications. Compr Rev Food Sci Food Saf 2024; 23:e13400. [PMID: 39030813 DOI: 10.1111/1541-4337.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024]
Abstract
During food production, food processing, and supply chain, large amounts of food byproducts are generated and thrown away as waste, which to a great extent brings about adverse consequences on the environment and economic development. The sweet potato (Ipomoea batatas L.) is cultivated and consumed in many countries. Sweet potato peels (SPPs) are the main byproducts generated by the tuber processing. These residues contain abundant nutrition elements, bioactive compounds, and other high value-added substances; therefore, the reutilization of SPP holds significance in improving their overall added value. SPPs contain abundant phenolic compounds and carotenoids, which might contribute significantly to their nutraceutical properties, including antioxidant, antimicrobial, anticancer, prebiotic, anti-inflammatory, wound-healing, and lipid-lowering effects. It has been demonstrated that SPP could be promisingly revalorized into food industry, including: (1) applications in diverse food products; (2) applications in food packaging; and (3) applications in the recovery of pectin and cellulose nanocrystals. Furthermore, SPP could be used as promising feedstocks for the bioconversion of diverse value-added bioproducts through biological processing.
Collapse
Affiliation(s)
- Haitao Jiang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Fan Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Tianyi Yang
- Analysis and Testing Center, Jiangnan University, Wuxi, P. R. China
| | - Chang Liu
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Wangyang Shen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, P. R. China
| | - Weiping Jin
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, P. R. China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Analysis and Testing Center, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
3
|
Siqueira MU, Contin B, Fernandes PRB, Ruschel-Soares R, Siqueira PU, Baruque-Ramos J. Brazilian Agro-industrial Wastes as Potential Textile and Other Raw Materials: a Sustainable Approach. MATERIALS CIRCULAR ECONOMY 2022. [PMCID: PMC8790225 DOI: 10.1007/s42824-021-00050-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Brazilian agro-industrial chain generates about 291 million/tons/year of wastes, which, if inadequately destinated, could originate social and environmental risks. There is a growing need for the use of alternative raw materials to replace that originated from fossil resources in the Brazilian industry. Renewable materials play an important role on the sustainability of ecosystems and materials’ circularity. The issue has acquired importance in light of recent bio-based agro-fiber development potential applications. Considering sustainability guidelines, this study aimed to analyze the main Brazilian agro-industrial waste crops (temporary and permanent) as important sources of natural fibers and other raw materials. A systematic review of the literature (SRL) about Brazilian researches, based on concepts of industrial ecology, and the creation of a bibliometric analysis network were carried out. The agricultural biomass related to the main crops presents characteristics making them suitable to be applied for textiles, as natural fibers and polymers, in biosorbents for industrial effluents, and cellulose obtention and reinforcement material in composites. Thus, scientific investment in researches on materials and technology development are necessary to provide applications that could meet current and future demands and expand the scope of new materials for sustainability.
Collapse
Affiliation(s)
- Mylena Uhlig Siqueira
- School of Arts, Sciences and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Sao Paulo, SP 03828-000 Brazil
| | - Barbara Contin
- School of Arts, Sciences and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Sao Paulo, SP 03828-000 Brazil
| | | | - Raysa Ruschel-Soares
- School of Arts, Sciences and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Sao Paulo, SP 03828-000 Brazil
| | - Philipe Uhlig Siqueira
- Department of Environmental Engineering, Federal University of Espirito Santo, Av. Fernando Ferrari, 514, Vitoria, ES 29075-910 Brazil
| | - Julia Baruque-Ramos
- School of Arts, Sciences and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Sao Paulo, SP 03828-000 Brazil
| |
Collapse
|
4
|
Ebrahimian F, Denayer JFM, Karimi K. Potato peel waste biorefinery for the sustainable production of biofuels, bioplastics, and biosorbents. BIORESOURCE TECHNOLOGY 2022; 360:127609. [PMID: 35840021 DOI: 10.1016/j.biortech.2022.127609] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Potato is the fourth most abundant crop harvested annually worldwide. Potato peel waste (PPW) is the main waste stream of potato-processing industries which is generated in large quantities and is a threat to the environment globally. However, owing to its compositional characteristics, availability, and zero cost, PPW is a renewable resource for the production of high-value bioproducts. Hence, this study provides a state-of-the-art overview of advancements in PPW valorization through biological and thermochemical conversions. PPW has a high potential for biofuel and biochemical generation through detoxification, pretreatment, hydrolysis, and fermentation. Moreover, many other valuable chemicals, including bio-oil, biochar, and biosorbents, can be produced via thermochemical conversions. However, several challenges are associated with the biological and thermochemical processing of PPW. The insights provided in this review pave the way toward a PPW-based biorefinery development, providing sustainable alternatives to fossil-based products and mitigating environmental concerns.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
5
|
Padierna-Vanegas D, Acosta-Pavas JC, Granados-García LM, Botero-Castro HA. Modeling Based Identifiability and Parametric Estimation of an Enzymatic Hydrolysis Process of Amylaceous Materials. ACS OMEGA 2022; 7:14544-14555. [PMID: 35557667 PMCID: PMC9088767 DOI: 10.1021/acsomega.1c06193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
This work presents the modeling of an enzymatic hydrolysis process of amylaceous materials considering the parameter identification problem as a basis for the construction of the model. For this, a modeling methodology is modified in order to apply the identifiability property and improve the proposed model structure. A brief theoretical explanation of the identifiability is described. This concept is based on the observability property of a nonlinear dynamic system. The used methodology is based on the phenomenological based semiphysical model (PBSM). This methodology visualizes that the structure of a dynamic model can only improve with new mass or energy balances suggested by model suppositions. Additionally, a computer algorithm is included in the methodology to validate if the model is structurally locally identifiable or know if the parameters are unidentifiable. Also, an optimization algorithm is used to obtain the numeric values of the identifiable parameters and, hence, guarantee the validity of the result. The methodology focuses on the liquefaction and saccharification stages of an enzymatic hydrolysis process. The results of the model are compared with experimental data. The comparison shows low errors of 7.96% for liquefaction and 7.35% for saccharification. These errors show a significant improvement in comparison with previous models and validate the proposed modeling methodology.
Collapse
Affiliation(s)
- Daniel Padierna-Vanegas
- Departamento
de Energía Eléctrica y Automática, Facultad de
Minas, Universidad Nacional de Colombia, Medellín 050034, Colombia
- KALMAN,
Grupo de investigación en Procesos Dinámicos, Universidad Nacional de Colombia, Medellín 050034, Colombia
| | - Juan Camilo Acosta-Pavas
- Departamento
de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Medellín 050034, Colombia
- BIOFRUN,
Grupo de investigación Bioprocesos y Flujos Reactivos, Universidad Nacional de Colombia, Medellín 050034, Colombia
| | - Laura María Granados-García
- Departamento
de Energía Eléctrica y Automática, Facultad de
Minas, Universidad Nacional de Colombia, Medellín 050034, Colombia
| | - Héctor Antonio Botero-Castro
- KALMAN,
Grupo de investigación en Procesos Dinámicos, Universidad Nacional de Colombia, Medellín 050034, Colombia
| |
Collapse
|
6
|
Characterization of active sweet potato-based films containing thymol at different varieties: VitAto and Anggun. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM. Biomass utilization and production of biofuels from carbon neutral materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116731. [PMID: 33607352 DOI: 10.1016/j.envpol.2021.116731] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world's energy need by producing least amount of toxic gases (reduction up to 20-70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, 530045, (A.P.), India
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi, 580027, Karnataka, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
8
|
Paul JS, Gupta N, Beliya E, Tiwari S, Jadhav SK. Aspects and Recent Trends in Microbial α-Amylase: a Review. Appl Biochem Biotechnol 2021; 193:2649-2698. [PMID: 33715051 DOI: 10.1007/s12010-021-03546-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
α-Amylases are the oldest and versatile starch hydrolysing enzymes which can replace chemical hydrolysis of starch in industries. It cleaves the α-(1,4)-D-glucosidic linkage of starch and other related polysaccharides to yield simple sugars like glucose, maltose and limit dextrin. α-Amylase covers about 30% shares of the total enzyme market. On account of their superior features, α-amylase is the most widely used among all the existing amylases for hydrolysis of polysaccharides. Endo-acting α-amylase of glycoside hydrolase family 13 is an extensively used biocatalyst and has various biotechnological applications like in starch processing, detergent, textile, paper and pharmaceutical industries. Apart from these, it has some novel applications including polymeric material for drug delivery, bioremediating agent, biodemulsifier and biofilm inhibitor. The present review will accomplish the research gap by providing the unexplored aspects of microbial α-amylase. It will allow the readers to know about the works that have already been done and the latest trends in this field. The manuscript has covered the latest immobilization techniques and the site-directed mutagenesis approaches which are readily being performed to confer the desirable property in wild-type α-amylases. Furthermore, it will state the inadequacies and the numerous obstacles coming in the way of its production during upstream and downstream steps and will also suggest some measures to obtain stable and industrial-grade α-amylase.
Collapse
Affiliation(s)
- Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Esmil Beliya
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.,Department of Botany, Govt. College, Bichhua, Chhindwara, MP, 480111, India
| | - Shubhra Tiwari
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.
| |
Collapse
|
9
|
Sustainable Second-Generation Bioethanol Production from Enzymatically Hydrolyzed Domestic Food Waste Using Pichia anomala as Biocatalyst. SUSTAINABILITY 2020. [DOI: 10.3390/su13010259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the current study, a domestic food waste containing more than 50% of carbohydrates was assessed as feedstock to produce second-generation bioethanol. Aiming to the maximum exploitation of the carbohydrate fraction of the waste, its hydrolysis via cellulolytic and amylolytic enzymatic blends was investigated and the saccharification efficiency was assessed in each case. Fermentation experiments were performed using the non-conventional yeast Pichia anomala (Wickerhamomyces anomalus) under both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) modes to evaluate the conversion efficiencies and ethanol yields for different enzymatic loadings. It was shown that the fermentation efficiency of the yeast was not affected by the fermentation mode and was high for all handlings, reaching 83%, whereas the enzymatic blend containing the highest amount of both cellulolytic and amylolytic enzymes led to almost complete liquefaction of the waste, resulting also in ethanol yields reaching 141.06 ± 6.81 g ethanol/kg waste (0.40 ± 0.03 g ethanol/g consumed carbohydrates). In the sequel, a scale-up fermentation experiment was performed with the highest loading of enzymes in SHF mode, from which the maximum specific growth rate, μmax, and the biomass yield, Yx/s, of the yeast from the hydrolyzed waste were estimated. The ethanol yields that were achieved were similar to those of the respective small scale experiments reaching 138.67 ± 5.69 g ethanol/kg waste (0.40 ± 0.01 g ethanol/g consumed carbohydrates).
Collapse
|
10
|
Kot AM, Pobiega K, Piwowarek K, Kieliszek M, Błażejak S, Gniewosz M, Lipińska E. Biotechnological Methods of Management and Utilization of Potato Industry Waste—a Review. POTATO RESEARCH 2020; 63:431-447. [DOI: 10.1007/s11540-019-09449-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/20/2019] [Indexed: 05/14/2025]
|
11
|
Coelho ALS, Arraes AA, Abreu-Lima TLDE, Carreiro SC. Hydrolysis of sweet potato (Ipomoea batatas (L.) Lam.) flour by Candida homilentoma strains: effects of pH and temperature using Central Composite Rotatable Design. AN ACAD BRAS CIENC 2020; 92:e20180410. [PMID: 32667509 DOI: 10.1590/0001-3765202020180410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/18/2019] [Indexed: 11/21/2022] Open
Abstract
The current study focuses on the evaluation of culture parameters on the enzymatic hydrolysis of Ipomoea batatas (L.) Lam flour by Candida homilentoma strains. A 2-factor-5-level CCRD was used to evaluate the effect of pH and temperature on the hydrolysis process. For the S-47 strain, pH and both studied parameters were significant at 48 h and 96 h, respectively. Regarding S-81 strain, temperature was the only factor affecting the process, at 96 hours. The regression models were significant, and no lack of fit was observed for them.
Collapse
Affiliation(s)
- Ana LetÍcia S Coelho
- Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina/UFSC, Florianópolis, SC, Brazil
| | - Agelles A Arraes
- Programa de Graduação em Engenharia de Alimentos, Universidade Federal do Tocantins/UFT, Palmas, TO, Brazil
| | - Thiago Lucas DE Abreu-Lima
- Programa de Graduação em Engenharia de Alimentos, Universidade Federal do Tocantins/UFT, Palmas, TO, Brazil
| | - Solange Cristina Carreiro
- Programa de Graduação em Engenharia de Alimentos, Universidade Federal do Tocantins/UFT, Palmas, TO, Brazil
| |
Collapse
|
12
|
Jin J, Lin H, Yagoub AEA, Xiong S, Xu L, Udenigwe CC. Effects of high power ultrasound on the enzymolysis and structures of sweet potato starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3498-3506. [PMID: 32227353 DOI: 10.1002/jsfa.10390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/24/2020] [Accepted: 03/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The general enzymatic method for producing reducing sugar is liquefaction followed by saccharification of starch. This method results in lower yields, consuming high energy and time. Therefore, the present study evaluated a new approach for producing reducing sugar from sweet potato starch (SPS), including simultaneous liquefaction (by α-amylase) and saccharification (by glucoamylase) of SPS pretreated with high power ultrasound. The effects of ultrasound parameters on the conversion rate of SPS and mechanism were investigated. RESULTS The optimum ultrasound pretreatment conditions were a frequency of 20 kHz, SPS concentration of 125 g L-1 , temperature of 30 °C, pulsed on-time of 3 s, pulsed off-time of 5 s, power density of 8 W mL-1 and sonication time of 15 min. The ultrasound assisted enzymolysis resulted in a SPS conversion rate of 59.10%, which was improved by 56.35% compared to the control. The results of pasting properties and thermal analysis showed that ultrasound pretreatment decreased the peak viscosity, breakdown temperature, setback viscosity, gelatinization range (TC - TO ) and enthalpy of gelatinization (ΔH) of SPS significantly (P < 0.05) by 12.1%, 7.6%, 6.6%, 18.8% and 44.4%, respectively. Fourier-transform infrared spectroscopy indicated that ultrasound damaged the ordered structures and crystallization zone. This was confirmed by X-ray diffraction analysis, which showed that the relative crystallinity was reduced by 15.0%. Scanning electron microscopy showed that ultrasound destroyed the surfaces and the linkages between starch granules. CONCLUSION Prior to simultaneous liquefaction and saccharification of SPS, high power ultrasound pretreatment is a promising method for improving the conversion rate of starch. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Jin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hongbin Lin
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shuangli Xiong
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Liang Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
13
|
Acosta-Pavas JC, Ruiz-Colorado ÁA. Approximation of Scale-Up of Enzymatic Hydrolysis Process from Phenomenological-Based Semiphysical Model and Control Theory Tools. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan Camilo Acosta-Pavas
- Departamento de Procesos y Energı́a, Facultad de Minas, Universidad Nacional de Colombia -Sede Medellı́n, Medellı́n 050034, Colombia
| | - Ángela Adriana Ruiz-Colorado
- Departamento de Procesos y Energı́a, Facultad de Minas, Universidad Nacional de Colombia -Sede Medellı́n, Medellı́n 050034, Colombia
| |
Collapse
|