1
|
Tian W, Wang R, Bo C, Yu Y, Zhang Y, Shin GI, Kim WY, Wang L. SDC mediates DNA methylation-controlled clock pace by interacting with ZTL in Arabidopsis. Nucleic Acids Res 2021; 49:3764-3780. [PMID: 33675668 PMCID: PMC8053106 DOI: 10.1093/nar/gkab128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Molecular bases of eukaryotic circadian clocks mainly rely on transcriptional-translational feedback loops (TTFLs), while epigenetic codes also play critical roles in fine-tuning circadian rhythms. However, unlike histone modification codes that play extensive and well-known roles in the regulation of circadian clocks, whether DNA methylation (5mC) can affect the circadian clock, and the associated underlying molecular mechanisms, remains largely unexplored in many organisms. Here we demonstrate that global genome DNA hypomethylation can significantly lengthen the circadian period of Arabidopsis. Transcriptomic and genetic evidence demonstrate that SUPPRESSOR OF drm1 drm2 cmt3 (SDC), encoding an F-box containing protein, is required for the DNA hypomethylation-tuned circadian clock. Moreover, SDC can physically interact with another F-box containing protein ZEITLUPE (ZTL) to diminish its accumulation. Genetic analysis further revealed that ZTL and its substrate TIMING OF CAB EXPRESSION 1 (TOC1) likely act downstream of DNA methyltransferases to control circadian rhythm. Together, our findings support the notion that DNA methylation is important to maintain proper circadian pace in Arabidopsis, and further established that SDC links DNA hypomethylation with a proteolytic cascade to assist in tuning the circadian clock.
Collapse
Affiliation(s)
- Wenwen Tian
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruyi Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Cunpei Bo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yingjun Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuanyuan Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21Plus), Research Institute of Life Sciences (RILS) and Institute of Agricultural and Life Science(IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Research Institute of Life Sciences (RILS) and Institute of Agricultural and Life Science(IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
2
|
Inostroza PA, Vera-Escalona I, Wild R, Norf H, Brauns M. Tandem Action of Natural and Chemical Stressors in Stream Ecosystems: Insights from a Population Genetic Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7962-7971. [PMID: 29898597 DOI: 10.1021/acs.est.8b01259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Agricultural and urban land use has dramatically increased over the last century and one consequence is the release of anthropogenic chemicals into aquatic ecosystems. One of the rarely studied consequences is the effect of land use change on internal concentrations of organic micropollutants (OMPs) in aquatic invertebrates and its effects on their genotype diversity. Here, we applied population genetic and internal concentrations of OMPs analyses to determine evolutionary implications of chemical pollution on Gammarus pulex populations from a natural and two agricultural streams. Along 14 consecutive months sampled, 26 different OMPs were quantified in G. pulex extracts with the highest number, concentration, and toxic pressure in the anthropogenically stressed stream ecosystems. Our results indicate distinct internal OMP profiles and changes in both genetic variation and genetic structure in streams affected by anthropogenic activity. Genetic variation was attributed to chemical pollution whereas changes in the genetic structure were attributed to environmental disturbances, such as changes in discharge in the impacted stream ecosystems, which worked both independently and in tandem. Finally, we conclude that human-impacted streams are subjected to severe alterations in their population genetic patterns compared to nonimpacted stream ecosystems.
Collapse
Affiliation(s)
- Pedro A Inostroza
- Department of River Ecology , Helmholtz Centre for Environmental Research - UFZ , Brückstraße 3A , Magdeburg , Germany
| | - Iván Vera-Escalona
- Department of Biology , Dalhousie University , 1355 Oxford St. , Halifax , Canada
| | - Romy Wild
- Department of River Ecology , Helmholtz Centre for Environmental Research - UFZ , Brückstraße 3A , Magdeburg , Germany
| | - Helge Norf
- Department of River Ecology , Helmholtz Centre for Environmental Research - UFZ , Brückstraße 3A , Magdeburg , Germany
- Department of Aquatic Ecosystem Analysis and Management , Helmholtz Centre for Environmental Research - UFZ , Brückstraße 3A , Magdeburg , Germany
| | - Mario Brauns
- Department of River Ecology , Helmholtz Centre for Environmental Research - UFZ , Brückstraße 3A , Magdeburg , Germany
| |
Collapse
|